如何在Scala中比较两个structypes,并在Scala中更改列的数据类型?

时间:2019-02-03 10:13:46

标签: scala apache-spark apache-spark-sql

我正在尝试使用Scala和Spark将数据从GP移至HDFS。

val execQuery    = "select * from schema.tablename"
val yearDF       = spark.read.format("jdbc").option("url", connectionUrl).option("dbtable", s"(${execQuery}) as year2016").option("user", devUserName).option("password", devPassword).option("partitionColumn","header_id").option("lowerBound", 19919927).option("upperBound", 28684058).option("numPartitions",30).load()
val yearDFSchema = yearDF.schema

yearDF的模式为:

root
 |-- source_system_name: string (nullable = true)
 |-- table_refresh_delay_min: decimal(38,30) (nullable = true)
 |-- release_number: decimal(38,30) (nullable = true)
 |-- change_number: decimal(38,30) (nullable = true)
 |-- interface_queue_enabled_flag: string (nullable = true)
 |-- rework_enabled_flag: string (nullable = true)
 |-- fdm_application_id: decimal(15,0) (nullable = true)
 |-- history_enabled_flag: string (nullable = true)

我们的项目给出的关于蜂巢的同一表的模式:

val hiveColumns = source_system_name:String|description:String|creation_date:Timestamp|status:String|status_date:Timestamp|table_refresh_delay_min:Timestamp|release_number:Double|change_number:Double|interface_queue_enabled_flag:String|rework_enabled_flag:String|fdm_application_id:Bigint|history_enabled_flag:String

因此,我使用hiveColumns并创建了一个新的StructType,如下所示:

def convertDatatype(datatype: String): DataType = {
  val convert = datatype match {
    case "string"     => StringType
    case "bigint"     => LongType
    case "int"        => IntegerType
    case "double"     => DoubleType
    case "date"       => TimestampType
    case "boolean"    => BooleanType
    case "timestamp"  => TimestampType
  }
  convert
}


val schemaList = hiveColumns.split("\\|")
val newSchema  = new StructType(schemaList.map(col => col.split(":")).map(e => StructField(e(0), convertDatatype(e(1)), true)))
newSchema.printTreeString()
root
 |-- source_system_name: string (nullable = true)
 |-- table_refresh_delay_min: double (nullable = true)
 |-- release_number: double (nullable = true)
 |-- change_number: double (nullable = true)
 |-- interface_queue_enabled_flag: string (nullable = true)
 |-- rework_enabled_flag: string (nullable = true)
 |-- fdm_application_id: long (nullable = true)
 |-- history_enabled_flag: string (nullable = true)

当我尝试在yearDF上应用新模式:schemaStructType时,出现异常:

 Caused by: java.lang.RuntimeException: java.math.BigDecimal is not a valid external type for schema of double

由于将十进制转换为双精度而发生异常。 我不了解如何将StructType:table_refresh_delay_min, release_number, change_number, fdm_application_id中的列newSchema的数据类型从DoubleType转换为yearDF模式中存在的相应数据类型。即

如果yearDFSchema中的列具有精度大于零的十进制数据类型,在这种情况下为十进制(38,30),我需要将newSchema中同一列的数据类型转换为{{1 }}

任何人都可以让我知道如何实现吗?

1 个答案:

答案 0 :(得分:0)

当您尝试使用 Developer's API 函数在RDD[Row]上应用架构时,会发生类似的错误:

def createDataFrame(rows: List[Row], schema: StructType): DataFrame
def createDataFrame(rowRDD: JavaRDD[Row], schema: StructType): DataFrame
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame

在这种情况下,存储的数据类型必须匹配外部(即Scala中的值类型)数据类型as listed in the official SQL,并且不应用任何类型强制转换或强制转换。

因此,作为用户,您有责任确保日期和架构兼容。

对您提供的问题的说明表明情况截然不同,要求提供CAST。让我们使用与示例完全相同的模式创建数据集:

val yearDF = spark.createDataFrame(
  sc.parallelize(Seq[Row]()),
  StructType(Seq(
    StructField("source_system_name", StringType),
    StructField("table_refresh_delay_min", DecimalType(38, 30)),
    StructField("release_number", DecimalType(38, 30)),
    StructField("change_number", DecimalType(38, 30)),
    StructField("interface_queue_enabled_flag", StringType),
    StructField("rework_enabled_flag", StringType),
    StructField("fdm_application_id", DecimalType(15, 0)),
    StructField("history_enabled_flag", StringType)
)))

yearDF.printSchema
root
 |-- source_system_name: string (nullable = true)
 |-- table_refresh_delay_min: decimal(38,30) (nullable = true)
 |-- release_number: decimal(38,30) (nullable = true)
 |-- change_number: decimal(38,30) (nullable = true)
 |-- interface_queue_enabled_flag: string (nullable = true)
 |-- rework_enabled_flag: string (nullable = true)
 |-- fdm_application_id: decimal(15,0) (nullable = true)
 |-- history_enabled_flag: string (nullable = true)

以及所需的类型,例如

val dtypes = Seq(
  "source_system_name" -> "string",
  "table_refresh_delay_min" -> "double",
  "release_number" -> "double",
  "change_number" -> "double",
  "interface_queue_enabled_flag" -> "string",
  "rework_enabled_flag" -> "string",
  "fdm_application_id" -> "long",
  "history_enabled_flag" -> "string"
)

然后您就可以映射:

val mapping = dtypes.toMap

yearDF.select(yearDF.columns.map { c => col(c).cast(mapping(c)) }: _*).printSchema
root
 |-- source_system_name: string (nullable = true)
 |-- table_refresh_delay_min: double (nullable = true)
 |-- release_number: double (nullable = true)
 |-- change_number: double (nullable = true)
 |-- interface_queue_enabled_flag: string (nullable = true)
 |-- rework_enabled_flag: string (nullable = true)
 |-- fdm_application_id: long (nullable = true)
 |-- history_enabled_flag: string (nullable = true)

这当然假定实际类型和所需类型兼容,并且CAST is allowed

如果由于特定的JDBC驱动程序的特殊性而仍然遇到问题,则应考虑手动(In Apache Spark 2.0.0, is it possible to fetch a query from an external database (rather than grab the whole table)?)直接将强制类型转换放置在查询中

val externalDtypes = Seq(
  "source_system_name" -> "text",
  "table_refresh_delay_min" -> "double precision",
  "release_number" -> "float8",
  "change_number" -> "float8",
  "interface_queue_enabled_flag" -> "string",
  "rework_enabled_flag" -> "string",
  "fdm_application_id" -> "bigint",
  "history_enabled_flag" -> "string"
)

val externalDtypes = dtypes.map { 
  case (c, t) => s"CAST(`$c` AS $t)" 
} .mkString(", ")

val dbTable = s"""(select $fields from schema.tablename) as tmp"""

或通过自定义模式:

spark.read
  .format("jdbc")
  .option(
    "customSchema",
    dtypes.map { case (c, t) => s"`$c` $t" } .mkString(", "))
  ...
  .load()