我正在为Hadoop流编写一个reducer(python3),它无法正常工作,例如对于以下输入:
data ='狗\ t1 \ t1 \ ndog \ t1 \ t1 \ ndog \ t0 \ t1 \ ndog \ t0 \ t1 \ ncat \ t0 \ t1 \ ncat \ t0 \ t1 \ ncat \ t1 \ t1 \ n'
import re
import sys
# initialize trackers
current_word = None
spam_count, ham_count = 0,0
# read from standard input
# Substitute read from a file
for line in data.splitlines():
#for line in sys.stdin:
# parse input
word, is_spam, count = line.split('\t')
count = int(count)
if word == current_word:
if is_spam == '1':
spam_count += count
else:
ham_count += count
else:
if current_word:
# word to emit...
if spam_count:
print("%s\t%s\t%s" % (current_word, '1', spam_count))
print("%s\t%s\t%s" % (current_word, '0', ham_count))
if is_spam == '1':
current_word, spam_count = word, count
else:
current_word, ham_count = word, count
if current_word == word:
if is_spam == '1':
print(f'{current_word}\t{is_spam}\t{spam_count}')
else:
print(f'{current_word}\t{is_spam}\t{spam_count}')
我得到了:
#dog 1 2
#dog 0 2
#cat 1 3
两个“垃圾邮件”狗以及两个“火腿”狗都可以。猫的状况不佳,应该是:
#dog 1 2
#dog 0 2
#cat 0 2
#cat 1 1
答案 0 :(得分:0)
原因是:您应该使ham_count
无效,不仅要更新spam_count
,反之亦然。
重写
if is_spam == '1':
current_word, spam_count = word, count
else:
current_word, ham_count = word, count
为
if is_spam == '1':
current_word, spam_count = word, count
ham_count = 0
else:
current_word, ham_count = word, count
spam_count = 0
尽管如此,输出不会与您的输出完全一样
1)因为您总是先打印spam_count
(但在示例输出中,“ cat ham”发出的时间更早)
2)输出块仅发出垃圾邮件或仅发出垃圾邮件,具体取决于is_spam
变量的当前状态,但是我想,您正在计划全部发出垃圾邮件,对吗?
The output:
dog 1 2
dog 0 2
cat 1 1
-“猫垃圾邮件”的计数正确,但是没有“猫火腿”的计数-我想,您至少应该打印以下内容:
重写此代码
if current_word == word:
if is_spam == '1':
print(f'{current_word}\t{is_spam}\t{spam_count}')
else:
print(f'{current_word}\t{is_spam}\t{spam_count}')
为
print(f'{current_word}\t{1}\t{spam_count}')
print(f'{current_word}\t{0}\t{ham_count}')
-和完整的输出将是
dog 1 2
dog 0 2
cat 1 1
cat 0 2
Itertools
另外,itertools模块非常适合执行类似任务:
import itertools
splitted_lines = map(lambda x: x.split('\t'), data.splitlines())
grouped = itertools.groupby(splitted_lines, lambda x: x[0])
grouped
是itertools.goupby对象,它是生成器-因此,请注意,它是惰性的,它仅返回一次值(因此,我在这里仅显示输出,因为它消耗生成器值)>
[(gr_name, list(gr)) for gr_name, gr in grouped]
Out:
[('dog',
[['dog', '1', '1'],
['dog', '1', '1'],
['dog', '0', '1'],
['dog', '0', '1']]),
('cat', [['cat', '0', '1'], ['cat', '0', '1'], ['cat', '1', '1']])]
好吧,现在可以根据is_spam
的地理位置将每个组重新分组:
import itertools
def sum_group(group):
"""
>>> sum_group([('1', [['dog', '1', '1'], ['dog', '1', '1']]), ('0', [['dog', '0', '1'], ['dog', '0', '1']])])
[('1', 2), ('0', 2)]
"""
return sum([int(i[-1]) for i in group])
splitted_lines = map(lambda x: x.split('\t'), data.splitlines())
grouped = itertools.groupby(splitted_lines, lambda x: x[0])
[(name, [(tag_name, sum_group(sub_group))
for tag_name, sub_group
in itertools.groupby(group, lambda x: x[1])])
for name, group in grouped]
Out:
[('dog', [('1', 2), ('0', 2)]), ('cat', [('0', 2), ('1', 1)])]
通过itertools完成示例:
import itertools
def emit_group(name, tag_name, group):
tag_sum = sum([int(i[-1]) for i in group])
print(f"{name}\t{tag_name}\t{tag_sum}") # emit here
return (name, tag_name, tag_sum) # return the same data
splitted_lines = map(lambda x: x.split('\t'), data.splitlines())
grouped = itertools.groupby(splitted_lines, lambda x: x[0])
emitted = [[emit_group(name, tag_name, sub_group)
for tag_name, sub_group
in itertools.groupby(group, lambda x: x[1])]
for name, group in grouped]
Out:
dog 1 2
dog 0 2
cat 0 2
cat 1 1
-emitted
包含具有相同数据的元组列表。由于它是lazy方法,因此可以完美地与流一起使用;如果您有兴趣,here是很好的iterools教程。