向NFL比赛数据框添加“季节”列的理想方法?

时间:2019-02-03 03:49:37

标签: python pandas

因此,我能够自己解决此问题,但感觉自己以一种极其低效的方式完成了任务。我希望有人可能能够提供替代解决方案,因为这不是理想的方法。

我拥有自2009赛季以来每场NFL比赛的数据。该数据集包括一个用于比赛日期的列,但不包括用于季节的列,因此我想创建一个。有时NFL在1月有比赛,所以我不能简单地根据年份来计算。

这是我想出的极其低效的解决方案:

# Create list of season years
season_years = [2009,2010,2011,2012,2013,2014,2015,2016,2017,2018]

# Initialize dictionary of seasons
seasons = {}

# Iterate over season years to add start and end dates to seasons dictionary
# Used Mar 1 and Feb 28 as start and end dates due to Super Bowl being played in early Feb every year
for year in season_years:
    seasons[year] = {'start': str(year) + '-03-01','end': str(year + 1) + '-02-28'}

# Turn seasons dictionary into dataframe
seasons_df = pd.DataFrame(seasons).transpose()

# Convert start and end dates in dataframe to datetime objects
seasons_df['start'] = pd.to_datetime(seasons_df['start'])
seasons_df['end'] = pd.to_datetime(seasons_df['end'])

# Initialize new column 'season' with None values
data['season'] = None

# Iterate over season years, add year to season column if game date is between start and end for that season
for year in season_years:
    data.loc[pd.to_datetime(data['game_date']).between(seasons_df.loc[year,'start'],seasons_df.loc[year,'end']),'season'] = year

所以这行得通,但是有点麻烦,我必须遍历Python列表才能创建新列。必须有更好的方法。

编辑:可以从kaggle此处下载数据:https://www.kaggle.com/maxhorowitz/nflplaybyplay2009to2016/version/6?

1 个答案:

答案 0 :(得分:0)

您可以使用pandas.date_range来生成季节的边界,然后使用pandas.cut来将每个游戏日期分配给一个季节:

bins = pd.date_range('2009-03-01', periods=10, freq=pd.offsets.DateOffset(years=1))
bins = pd.Series(bins, index=bins.year)
data['season'] = pd.cut(df['game_date'], bins, labels=bins.index[:-1]).astype(int)

其中bins如下所示:

# print bins
2009   2009-03-01
2010   2010-03-01
2011   2011-03-01
2012   2012-03-01
2013   2013-03-01
2014   2014-03-01
2015   2015-03-01
2016   2016-03-01
2017   2017-03-01
2018   2018-03-01
dtype: datetime64[ns]

一组随机游戏日期的结果:

# print data.sample(10).sort_values('game_date')
      game_date  season
77   2010-03-19    2010
177  2010-06-27    2010
547  2011-07-02    2011
720  2011-12-22    2011
775  2012-02-15    2011
847  2012-04-27    2012
888  2012-06-07    2012
1636 2014-06-25    2014
1696 2014-08-24    2014
2010 2015-07-04    2015