我需要帮助在Mac上加载TensorBoard

时间:2019-02-03 02:58:02

标签: python macos tensorflow neural-network tensorboard

这是目前唯一将有什么做记录的部分。

import tflearn 
from tflearn.layers.conv import conv_2d, max_pool_2d 
from tflearn.layers.core import input_data, dropout, fully_connected 
from tflearn.layers.estimator import regression 

import tensorflow as tf 
tf.reset_default_graph() 

convnet = input_data(shape =[None, WIDTH, HEIGHT, 1], name ='input')
convnet = conv_2d(convnet, 32, 5, activation ='relu') 
convnet = max_pool_2d(convnet, 5) 
convnet = conv_2d(convnet, 64, 5, activation ='relu') 
convnet = max_pool_2d(convnet, 5) 

convnet = conv_2d(convnet, 128, 5, activation ='relu') 
convnet = max_pool_2d(convnet, 5) 

convnet = conv_2d(convnet, 64, 5, activation ='relu') 
convnet = max_pool_2d(convnet, 5) 

convnet = conv_2d(convnet, 32, 5, activation ='relu') 
convnet = max_pool_2d(convnet, 5) 

convnet = fully_connected(convnet, 1024, activation ='relu') 
convnet = dropout(convnet, 0.8) 

convnet = fully_connected(convnet, PATH_TO_NUMBER_OF_CLASSES,       activation ='softmax') 
convnet = regression(convnet, optimizer ='adam', learning_rate = 0.001, 
  loss ='categorical_crossentropy', name ='targets') 

model = tflearn.DNN(convnet,tensorboard_dir = 'log')


#Seperating the image and its label(One Hot Encoder)
#X is the image
#Y is the One Hot
#Therefore, i[0] is the pixel data and i[1] is the label
X = np.array([i[0] for i in train]).reshape(-1, WIDTH, HEIGHT, 1)
Y = [i[1] for i in train]

test_x = np.array([i[0] for i in test]).reshape(-1, WIDTH, HEIGHT, 1)
test_y = [i[1] for i in test]

model.fit({'input': X}, {'targets': Y}, n_epoch=3, validation_set=.    ({'input': test_x}, {'targets': test_y}), 
snapshot_step=500, show_metric=True, run_id='test')

在终端中,请确保我处于tensorflow环境中。然后我输入tensorboard --logdir = / TMP /日志

后来我复制并粘贴到浏览器中给定的URL,它仍然无法正常工作。

1 个答案:

答案 0 :(得分:1)

您必须设置详细级别并等于日志目录:

model = DNN(optimizer, tensorboard_verbose=3, tensorboard_dir='/tmp/tflearn_logs/')

顺便说一下,/tmp/tflearn_logs/tensorboard_dir的默认值,因此您不必更改此参数。

然后您可以使用以下方法打开板子:

$ tensorboard --logdir='/tmp/tflearn_logs'

来源:http://tflearn.org/getting_started/#visualization