最小迭代绘制规则的形状(“龟”)

时间:2019-02-03 02:50:42

标签: python math geometry iteration turtle-graphics

我试图找到需要形成没有我的“龟”正多边形迭代的次数最少(形状)重复其运动....和注意到一个怪(?)的关系,我不能精确定位。

如果您运行下面的代码并尝试不同的值(请注意:请确保将参数'x'和'n'替换为您选择的实际数字)

import turtle

def draw_square():
    wn = turtle.Screen()
    wn.bgcolor("black")
    mike = turtle.Turtle()
    mike.shape("turtle")
    mike.color("yellow")
    mike.speed(100)

    count = 0
    while count < n:                    # replace n with number!
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(x)                   # replace x with number!

if __name__ == "__main__":
    draw_square()

您会发现海龟以圆周运动移动。

例如,您会注意到x = 100时,最小值为。的n个需要形成规则的形状值是36(因为100° - 90°= 10°; 360°/ 10°= 36)。 when x = 10 e.g

进一步的试验表明:

x = 1, (min.) n = 360                   # 360°/1° = 360

x = 5, (min.) n = 72                    # 360°/5° = 72

x = 9, (min.) n = 10*                   # 360°/9° = 10*

x = 10, (min.) n = 9*                   # 360°/10° = 9*

x = 45, (min.) n = 8                    # 360°/45° = 8

x = 90, (min.) n = 1*                   # 360°/90° = 4*

## NOTE: no obvs. solution for n, if x isn't factor of 360....

*:奇怪的是,您必须将结果除以4以获得最小值。 N代表一些数字的值。 我最初以为是9的倍数,或四圈方形的事,但[上述]使我拒绝我的假设。

那么有人对通用规则有更好的主意吗?干杯。

2 个答案:

答案 0 :(得分:0)

  

那么有人对通用规则有更好的主意吗?

我相信我已经缩小了范围。您的表格中有一些错误。并且有四种不同类型的异常,而不仅仅是“将结果除以4”之一。实际上,在360个因素中,异常的发生率比简单的360 / x规则要高。四个例外是:

之后,如果n = 360 / x是{,则x

A) multiple of 8 then n *= 4
B) multiple of 4 then n *= 2
C) multiple of 6 and not a multiple of 9 then n /= 2
D) multiple of 2 then n /= 4

必须按上述顺序应用规则,并且只有一个规则可以触发。如果没有规则适用,请保留n不变。修改后的360因子表:

x =   1, n = 360      , 360° /   1° = 360 
x =   2, n =  45 (/ 4), 360° /   2° = 180 (D)
x =   3, n = 120      , 360° /   3° = 120 
x =   4, n = 180 (* 2), 360° /   4° =  90 (B)
x =   5, n =  72      , 360° /   5° =  72 
x =   6, n =  30 (/ 2), 360° /   6° =  60 (C)
x =   8, n = 180 (* 4), 360° /   8° =  45 (A)
x =   9, n =  40      , 360° /   9° =  40 
x =  10, n =   9 (/ 4), 360° /  10° =  36 (D)
x =  12, n =  60 (* 2), 360° /  12° =  30 (B)
x =  15, n =  24      , 360° /  15° =  24 
x =  18, n =   5 (/ 4), 360° /  18° =  20 (D)
x =  20, n =  36 (* 2), 360° /  20° =  18 (B)
x =  24, n =  60 (* 4), 360° /  24° =  15 (A)
x =  30, n =   6 (/ 2), 360° /  30° =  12 (C)
x =  36, n =  20 (* 2), 360° /  36° =  10 (B)
x =  40, n =  36 (* 4), 360° /  40° =   9 (A)
x =  45, n =   8      , 360° /  45° =   8 
x =  60, n =  12 (* 2), 360° /  60° =   6 (B)
x =  72, n =  20 (* 4), 360° /  72° =   5 (A)
x =  90, n =   1 (/ 4), 360° /  90° =   4 (D)
x = 120, n =  12 (* 4), 360° / 120° =   3 (A)
x = 180, n =   4 (* 2), 360° / 180° =   2 (B)
x = 360, n =   4 (* 4), 360° / 360° =   1 (A)

生成上表的代码:

EXCEPTIONS = [
    ('A', lambda x: x % 8 == 0, lambda n: n * 4, "(* 4)"),
    ('B', lambda x: x % 4 == 0, lambda n: n * 2, "(* 2)"),
    ('C', lambda x: x % 6 == 0 and x % 9 != 0, lambda n: n // 2, "(/ 2)"),
    ('D', lambda x: x % 2 == 0, lambda n: n // 4, "(/ 4)"),
]

for x in range(1, 360 + 1):
    if 360 % x != 0:
        continue

    n = 360 // x

    for exception, test, outcome, explain in EXCEPTIONS:
        if test(x):
            n = outcome(n)
            exception = f"({exception})"
            break
    else:  # no break
        exception = explain = ''  # no rule applies

    angle = 360 // x

    print(f"x = {x:3}, n = {n:3} {explain:5}, 360° / {x:3}° = {angle:3} {exception}")

我对用于测试单个表条目的代码进行了重做:

from turtle import Screen, Turtle

def draw_square(angle, repetitions):
    mike = Turtle("turtle")
    mike.speed('fastest')
    mike.color("yellow")

    count = 0

    while count < repetitions:
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(angle)

        count += 1

if __name__ == "__main__":
    wn = Screen()
    wn.bgcolor("black")

    draw_square(9, 40)

    wn.exitonclick()

enter image description here

答案 1 :(得分:0)

根据@cdlane标识的规则集,我找到了一种快速查找最小值的方法。任何输入x的迭代次数(无论是否为360因子)都需要完成常规形状! (当然,我也意识到某些情况下根本没有最小值,例如x为20.75时)

下面的代码显示了我对已确定的故障的更正以及添加heading()的功能,以检查麦克在循环后是否已返回其原始位置:

import turtle

def draw_square(angle, repetitions):
    mike = turtle.Turtle()
    mike.shape("turtle")
    mike.color("red")
    mike.speed("fastest")

    count = 0
    while count < repetitions:
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(90)
        mike.forward(100)
        mike.right(angle)

        count += 1

        print("Turn ", count, "; ", mike.heading())

        if mike.heading() == 0:
            break

    print("Min. iterations needed to complete cycle:  ", count)

if __name__ == "__main__":
    wn = turtle.Screen()
    wn.bgcolor("black")

    x = int(input("Enter angle: "))
    n = int(input("Enter boundary: "))        # For n, advisably to a v large number; while loop will probably break before reaching its limit anyways

    draw_square(x, n)
    wn.exitonclick()