我在一个简单的HTML文件中嵌入了javascript代码,除了该javascript代码之外,该文件不包含任何其他脚本。我正在使用document.createElement("canvas")
来显示神经网络预测模型,但是当我在浏览器中加载HTML文档(只是一个空白的页面)时,页面上什么都没有显示。我是JS的初学者,所以如果我忽略了它,那我不会感到惊讶。预先为大部分代码道歉。
<!DOCTYPE html>
<html>
<head>
<title>
Training red/blue flower prediction model neural network (using JS)
</title>
</head>
<body>
<script type="text/javascript">
//training set. [Input data(length, width), output data(color(0=blue and 1=red))]
var dataB1 = [2, 1, 0];
var dataB2 = [3, 1, 0];
var dataB3 = [2, 0.5, 0];
var dataB4 = [1, 1, 0];
var dataR1 = [3, 1.5, 1];
var dataR2 = [3.5, 0.5, 1];
var dataR3 = [4, 1.5, 1];
var dataR4 = [5.5, 1, 1];
//unknown type (data we want to find)
var dataU = [4.5, 1, "it should be 1"];
var all_points = [dataB1, dataB2, dataB3, dataB4, dataR1, dataR2, dataR3, dataR4];
function sigmoid(x) {
return 1/(1+Math.exp(-x));
}
//training
function train() {
let w1 = Maths.random()*0.2-0.1;
let w2 = Maths.random()*0.2-0.1;
let b = Maths.random()*0.2-0.1;
let learning_rate = 0.2; // fraction of the weight that we're going to be using
for (let iter = 0; iter < 50000; iter++) {
// pick a random point
let random_idx = Math.floor(Math.random() * all_points.length);
let point = all_point[random_idx];
let target = point[2]; //target stored in 3rd coord of points
// feed forward
let z = w1 * point[0] + w2 * point[1] + b;
let pred = sigmoid(z);
// now we compare the model prediction with the target
let cost = (pred - target) ** 2;
// now we find the slope of the cost w.r.t. each parameter (w1, w2, b)
// bring derivative through square function
let dcost_dpred = 2 * (pred - target);
// bring derivative through sigmoid
// derivative of sigmoid can be written using more sigmoids! d/dz sigmoid(z) = sigmoid(z)*(1-sigmoid(z))
let dpred_dz = sigmoid(z) * (1-sigmoid(z));
// I think you forgot these in your slope calculations?
let dz_dw1 = point[0];
let dz_dw2 = point[1];
let dz_db = 1;
// now we can get the partial derivatives using the chain rule
// notice the pattern? We're bringing how the cost changes through each function, first through the square, then through the sigmoid
// and finally whatever is multiplying our parameter of interest becomes the last part
let dcost_dw1 = dcost_pred * dpred_dz * dz_dw1;
let dcost_dw2 = dcost_dpred * dpred_dz * dz_dw2;
let dcost_b = dcost_dpred * dpred_dz * dz_db;
// now we update our parameters!
w1 -= learning_rate * dcost_dw1;
w2 -= learning_rate * dcost_dw2;
b -= learning_rate * dcost_b;
}
// return the learnt parameters, assuming after 50000 loops of error corrections the network has reached its minima point of error.
return {w1: w1, w2: w2, b: b};
}
let canvas = document.createElement("canvas");
canvas.width = 400;
canvas.height = 400;
document.body.appendChild(canvas);
let ctx = canvas.getContext("2d");
ctx.font = "Helvetica";
// map points from graph coordinates to the screen
let graph_size = {width: 7, height: 7};
function to_screen(x, y) {
return {x: (x/graph_size.width)*canvas.width, y: -(y/graph_size.height)*canvas.height + canvas.height};
}
// map points from screen coordinates to the graph
function to_graph(x, y) {
return {x: x/canvas.width*graph_size.width, y: graph_size.height - y/canvas.height*graph_size.height};
}
// draw the graph's grid lines
function draw_grid() {
ctx.strokeStyle = "#AAAAAA";
for (let j = 0; j <= graph_size.width; j++) {
// x lines
ctx.beginPath();
let p = to_screen(j, 0);
ctx.moveTo(p.x, p.y);
p = to_screen(j, graph_size.height);
ctx.lineTo(p.x, p.y);
ctx.stroke();
// y lines
ctx.beginPath();
let p = to_screen(0, j);
ctx.moveTo(p.x, p.y);
p = to_screen(graph_size.width, j);
ctx.lineTo(p.x, p.y);
ctx.stroke();
}
}
// draw points
function draw_points() {
// unknown
let p = to_screen(dataU[0], dataU[1]);
ctx.fillStyle = "#555555";
ctx.fillText("???", p.x-8, p.y-5);
ctx.fillRect(p.x-2, p.y-2, 4, 4);
// draw points
ctx.fillStyle = "#0000FF";
for (let j = 0; j < all_points.length; j++) {
let point = all_points[j];
if (point[2] == 0) {
ctx.fillStyle = "#0000FF";
} else {
ctx.fillStyle = "#FF0000";
}
p = to_screen(point[0], point[1]);
ctx.fillRect(p.x-2, p.y-2, 4, 4);
}
}
//visualize model output on grid of points
function visualize_params(params) {
ctx.save();
ctx.globalAlpha = 0.2;
let step_size = 0.1;
let box_size = canvas.width/(graph_size.width/step_size);
for (let xx = 0; xx < graph_size.width; xx += step_size) {
for (let yy = 0; yy < graph_size.height; yy += step_size) {
let model_out = sigmoid( xx * params.w1 + yy * params.w2 + params.b );
if (model_out < 0.5) {
// blue
ctx.fillStyle = "#0000FF";
} else {
//red
ctx.fillStyle = "#FF0000"
}
let p = to_screen(xx, yy);
ctx.fillRect(p.x, p.y, box_size, box_size);
}
}
ctx.restore();
}
// find parameters
var params = train();
// visualize model output
ctx.clearRect(0, 0, canvas.width, canvas.height);
draw_grid();
draw_points();
visualize_params(params);
// label what the model would say for a given mouse position
window.onmousemove = function(evt) {
ctx.clearRect(0, 0, 100, 50);
let p = {x: 10, y: 20};
let mouse = {x: evt.offsetX, y: evt.offsetY};
let mouse_graph = to_graph(mouse.x, mouse.y);
ctx.fillText("x: " + Math.round(mouse_graph.x*100)/100, p.x, p.y);
ctx.fillText("y: " + Math.round(mouse_graph.y*100)/100, p.x, p.y +10);
// model output
let model_out = sigmoid( mouse_graph.x * params.w1 + mouse_graph.y * params.w2 + params.b );
model_out = Math.round(model_out*100)/100;
ctx.fillText("prediction: " + model_out, p.x, p.y + 20);
}
</script>
</body>
</html>
基本上,我希望看到以下图像显示在浏览器中:
非常感谢。
答案 0 :(得分:2)
使用我提供的代码,您只会犯一些简单的错误。
let w1 = Maths.random()*0.2-0.1;
使用Maths
订单:33 强>
let point = all_point[random_idx];
。 all_point
代替all_points Line:40
由dcost_pred
代替dcost_dpred
第66行
在p
中两次使用function draw_grid()
<!DOCTYPE html>
<html>
<head>
<title>
Training red/blue flower prediction model neural network (using JS)
</title>
</head>
<body>
<script type="text/javascript">
//training set. [Input data(length, width), output data(color(0=blue and 1=red))]
var dataB1 = [2, 1, 0];
var dataB2 = [3, 1, 0];
var dataB3 = [2, 0.5, 0];
var dataB4 = [1, 1, 0];
var dataR1 = [3, 1.5, 1];
var dataR2 = [3.5, 0.5, 1];
var dataR3 = [4, 1.5, 1];
var dataR4 = [5.5, 1, 1];
//unknown type (data we want to find)
var dataU = [4.5, 1, "it should be 1"];
var all_points = [dataB1, dataB2, dataB3, dataB4, dataR1, dataR2, dataR3, dataR4];
function sigmoid(x) {
return 1/(1+Math.exp(-x));
}
//training
function train() {
let w1 = Math.random()*0.2-0.1;
let w2 = Math.random()*0.2-0.1;
let b = Math.random()*0.2-0.1;
let learning_rate = 0.2; // fraction of the weight that we're going to be using
for (let iter = 0; iter < 50000; iter++) {
// pick a random point
let random_idx = Math.floor(Math.random() * all_points.length);
let point = all_points[random_idx];
let target = point[2]; //target stored in 3rd coord of points
// feed forward
let z = w1 * point[0] + w2 * point[1] + b;
let pred = sigmoid(z);
// now we compare the model prediction with the target
let cost = (pred - target) ** 2;
// now we find the slope of the cost w.r.t. each parameter (w1, w2, b)
// bring derivative through square function
let dcost_dpred = 2 * (pred - target);
// bring derivative through sigmoid
// derivative of sigmoid can be written using more sigmoids! d/dz sigmoid(z) = sigmoid(z)*(1-sigmoid(z))
let dpred_dz = sigmoid(z) * (1-sigmoid(z));
// I think you forgot these in your slope calculations?
let dz_dw1 = point[0];
let dz_dw2 = point[1];
let dz_db = 1;
// now we can get the partial derivatives using the chain rule
// notice the pattern? We're bringing how the cost changes through each function, first through the square, then through the sigmoid
// and finally whatever is multiplying our parameter of interest becomes the last part
let dcost_dw1 = dcost_dpred * dpred_dz * dz_dw1;
let dcost_dw2 = dcost_dpred * dpred_dz * dz_dw2;
let dcost_b = dcost_dpred * dpred_dz * dz_db;
// now we update our parameters!
w1 -= learning_rate * dcost_dw1;
w2 -= learning_rate * dcost_dw2;
b -= learning_rate * dcost_b;
}
// return the learnt parameters, assuming after 50000 loops of error corrections the network has reached its minima point of error.
return {w1: w1, w2: w2, b: b};
}
let canvas = document.createElement("canvas");
canvas.width = 400;
canvas.height = 400;
document.body.appendChild(canvas);
let ctx = canvas.getContext("2d");
ctx.font = "Helvetica";
// map points from graph coordinates to the screen
let graph_size = {width: 7, height: 7};
function to_screen(x, y) {
return {x: (x/graph_size.width)*canvas.width, y: -(y/graph_size.height)*canvas.height + canvas.height};
}
// map points from screen coordinates to the graph
function to_graph(x, y) {
return {x: x/canvas.width*graph_size.width, y: graph_size.height - y/canvas.height*graph_size.height};
}
// draw the graph's grid lines
function draw_grid() {
ctx.strokeStyle = "#AAAAAA";
for (let j = 0; j <= graph_size.width; j++) {
// x lines
ctx.beginPath();
let p = to_screen(j, 0);
ctx.moveTo(p.x, p.y);
p = to_screen(j, graph_size.height);
ctx.lineTo(p.x, p.y);
ctx.stroke();
// y lines
ctx.beginPath();
p = to_screen(0, j);
ctx.moveTo(p.x, p.y);
p = to_screen(graph_size.width, j);
ctx.lineTo(p.x, p.y);
ctx.stroke();
}
}
// draw points
function draw_points() {
// unknown
let p = to_screen(dataU[0], dataU[1]);
ctx.fillStyle = "#555555";
ctx.fillText("???", p.x-8, p.y-5);
ctx.fillRect(p.x-2, p.y-2, 4, 4);
// draw points
ctx.fillStyle = "#0000FF";
for (let j = 0; j < all_points.length; j++) {
let point = all_points[j];
if (point[2] == 0) {
ctx.fillStyle = "#0000FF";
} else {
ctx.fillStyle = "#FF0000";
}
p = to_screen(point[0], point[1]);
ctx.fillRect(p.x-2, p.y-2, 4, 4);
}
}
//visualize model output on grid of points
function visualize_params(params) {
ctx.save();
ctx.globalAlpha = 0.2;
let step_size = 0.1;
let box_size = canvas.width/(graph_size.width/step_size);
for (let xx = 0; xx < graph_size.width; xx += step_size) {
for (let yy = 0; yy < graph_size.height; yy += step_size) {
let model_out = sigmoid( xx * params.w1 + yy * params.w2 + params.b );
if (model_out < 0.5) {
// blue
ctx.fillStyle = "#0000FF";
} else {
//red
ctx.fillStyle = "#FF0000"
}
let p = to_screen(xx, yy);
ctx.fillRect(p.x, p.y, box_size, box_size);
}
}
ctx.restore();
}
// find parameters
var params = train();
// visualize model output
ctx.clearRect(0, 0, canvas.width, canvas.height);
draw_grid();
draw_points();
visualize_params(params);
// label what the model would say for a given mouse position
window.onmousemove = function(evt) {
ctx.clearRect(0, 0, 100, 50);
let p = {x: 10, y: 20};
let mouse = {x: evt.offsetX, y: evt.offsetY};
let mouse_graph = to_graph(mouse.x, mouse.y);
ctx.fillText("x: " + Math.round(mouse_graph.x*100)/100, p.x, p.y);
ctx.fillText("y: " + Math.round(mouse_graph.y*100)/100, p.x, p.y +10);
// model output
let model_out = sigmoid( mouse_graph.x * params.w1 + mouse_graph.y * params.w2 + params.b );
model_out = Math.round(model_out*100)/100;
ctx.fillText("prediction: " + model_out, p.x, p.y + 20);
}
</script>
</body>
</html>