如何将字典的文本文件读取到DataFrame中

时间:2019-02-02 03:08:32

标签: python pandas file dictionary text

我有一个来自皇家冲突统计数据Kaggle的文本文件。它采用Python字典的格式。我正在努力寻找如何以有意义的方式将其读入文件的方法。好奇这样做的最佳方法是什么。这是带有列表的相当复杂的Dict。

原始数据集在这里: https://www.kaggle.com/s1m0n38/clash-royale-matches-dataset

{'players': {'right': {'deck': [['Mega Minion', '9'], ['Electro Wizard', '3'], ['Arrows', '11'], ['Lightning', '5'], ['Tombstone', '9'], ['The Log', '2'], ['Giant', '9'], ['Bowler', '5']], 'trophy': '4258', 'clan': 'TwoFiveOne', 'name': 'gpa raid'}, 'left': {'deck': [['Fireball', '9'], ['Archers', '12'], ['Goblins', '12'], ['Minions', '11'], ['Bomber', '12'], ['The Log', '2'], ['Barbarians', '12'], ['Royal Giant', '13']], 'trophy': '4325', 'clan': 'battusai', 'name': 'Supr4'}}, 'type': 'ladder', 'result': ['2', '0'], 'time': '2017-07-12'}
{'players': {'right': {'deck': [['Ice Spirit', '10'], ['Valkyrie', '9'], ['Hog Rider', '9'], ['Inferno Tower', '9'], ['Goblins', '12'], ['Musketeer', '9'], ['Zap', '12'], ['Fireball', '9']], 'trophy': '4237', 'clan': 'The Wolves', 'name': 'TITAN'}, 'left': {'deck': [['Royal Giant', '13'], ['Ice Wizard', '2'], ['Bomber', '12'], ['Knight', '12'], ['Fireball', '9'], ['Barbarians', '12'], ['The Log', '2'], ['Archers', '12']], 'trophy': '4296', 'clan': 'battusai', 'name': 'Supr4'}}, 'type': 'ladder', 'result': ['1', '0'], 'time': '2017-07-12'}
{'players': {'right': {'deck': [['Miner', '3'], ['Ice Golem', '9'], ['Spear Goblins', '12'], ['Minion Horde', '12'], ['Inferno Tower', '8'], ['The Log', '2'], ['Skeleton Army', '6'], ['Fireball', '10']], 'trophy': '4300', 'clan': '@LA PERLA NEGRA', 'name': 'Victor'}, 'left': {'deck': [['Royal Giant', '13'], ['Ice Wizard', '2'], ['Bomber', '12'], ['Knight', '12'], ['Fireball', '9'], ['Barbarians', '12'], ['The Log', '2'], ['Archers', '12']], 'trophy': '4267', 'clan': 'battusai', 'name': 'Supr4'}}, 'type': 'ladder', 'result': ['0', '1'], 'time': '2017-07-12'}

3 个答案:

答案 0 :(得分:2)

我将您的数据保存到.json文件中,然后只需要遍历每一行并将其视为自己的JSON文件,然后使用pandas.io.json.json_normalize将其加载到DataFrame中我对您希望df的外观做出了一些猜测,但我想出了这一点:

注释: 正确的JSON需要使用双引号而不是单引号,因此我使用replace来解决此问题。请注意,不要使用此方法来重试内部数据。

注释: 要使此工作正常进行,必须合并'right''left',以免丢失这些数据。如果需要,您可以使用dict comp作为解决方法

import json
import pandas as pd
from pandas.io.json import json_normalize

with open('cr.json', 'r') as f:
    df = None
    for line in f:
        data = json.loads(line.replace("'", '"'))
        #needed to put the right and left keys together, maybe you can find a way around this, I wasn't
        df1 = json_normalize([data['players']['right'], data['players']['left']],
                     'deck',
                     ['name', 'trophy', 'clan'],
                     meta_prefix='player.',
                     errors='ignore')
        df = pd.concat([df, df1])
    df.rename(columns={0: 'player.troop.name', 1: 'player.troop.level'}, 
              inplace=True)
    print(df)

打印:

   player.troop.name player.troop.level player.name      player.clan  \
0        Mega Minion                  9    gpa raid       TwoFiveOne   
1     Electro Wizard                  3    gpa raid       TwoFiveOne   
2             Arrows                 11    gpa raid       TwoFiveOne   
3          Lightning                  5    gpa raid       TwoFiveOne   
4          Tombstone                  9    gpa raid       TwoFiveOne   
5            The Log                  2    gpa raid       TwoFiveOne   
6              Giant                  9    gpa raid       TwoFiveOne   
7             Bowler                  5    gpa raid       TwoFiveOne   
8           Fireball                  9       Supr4         battusai   
9            Archers                 12       Supr4         battusai   
10           Goblins                 12       Supr4         battusai   
11           Minions                 11       Supr4         battusai   
12            Bomber                 12       Supr4         battusai   
13           The Log                  2       Supr4         battusai   
14        Barbarians                 12       Supr4         battusai   
15       Royal Giant                 13       Supr4         battusai   
0         Ice Spirit                 10       TITAN       The Wolves   
1           Valkyrie                  9       TITAN       The Wolves   
2          Hog Rider                  9       TITAN       The Wolves   
3      Inferno Tower                  9       TITAN       The Wolves   
4            Goblins                 12       TITAN       The Wolves   
5          Musketeer                  9       TITAN       The Wolves   
6                Zap                 12       TITAN       The Wolves   
7           Fireball                  9       TITAN       The Wolves   
8        Royal Giant                 13       Supr4         battusai   
9         Ice Wizard                  2       Supr4         battusai   
10            Bomber                 12       Supr4         battusai   
11            Knight                 12       Supr4         battusai   
12          Fireball                  9       Supr4         battusai   
13        Barbarians                 12       Supr4         battusai   
14           The Log                  2       Supr4         battusai   
15           Archers                 12       Supr4         battusai   
0              Miner                  3      Victor  @LA PERLA NEGRA   
1          Ice Golem                  9      Victor  @LA PERLA NEGRA   
2      Spear Goblins                 12      Victor  @LA PERLA NEGRA   
3       Minion Horde                 12      Victor  @LA PERLA NEGRA   
4      Inferno Tower                  8      Victor  @LA PERLA NEGRA   
5            The Log                  2      Victor  @LA PERLA NEGRA   
6      Skeleton Army                  6      Victor  @LA PERLA NEGRA   
7           Fireball                 10      Victor  @LA PERLA NEGRA   
8        Royal Giant                 13       Supr4         battusai   
9         Ice Wizard                  2       Supr4         battusai   
10            Bomber                 12       Supr4         battusai   
11            Knight                 12       Supr4         battusai   
12          Fireball                  9       Supr4         battusai   
13        Barbarians                 12       Supr4         battusai   
14           The Log                  2       Supr4         battusai   
15           Archers                 12       Supr4         battusai   

   player.trophy  
0           4258  
1           4258  
2           4258  
3           4258  
4           4258  
5           4258  
6           4258  
7           4258  
8           4325  
9           4325  
10          4325  
11          4325  
12          4325  
13          4325  
14          4325  
15          4325  
0           4237  
1           4237  
2           4237  
3           4237  
4           4237  
5           4237  
6           4237  
7           4237  
8           4296  
9           4296  
10          4296  
11          4296  
12          4296  
13          4296  
14          4296  
15          4296  
0           4300  
1           4300  
2           4300  
3           4300  
4           4300  
5           4300  
6           4300  
7           4300  
8           4267  
9           4267  
10          4267  
11          4267  
12          4267  
13          4267  
14          4267  
15          4267

df.iloc[0]如下:

player.troop.name Mega Minion
player.troop.level         9
player.name         gpa raid
player.trophy           4258
player.clan       TwoFiveOne
Name: 0, dtype: object

您可以按照自己的意愿调整json_normalize参数,但我希望这足以使您前进

答案 1 :(得分:2)

根据该数据集的synopsis on kaggle,每个字典代表两个玩家之间的匹配。我觉得让数据框中的每一行代表单个匹配项的所有特征是很有意义的。

这可以通过几个简单的步骤来完成。

  1. 将所有匹配字典(kaggle中数据集的每一行)存储在一个列表中:
matches = [
{'players': {'right': {'deck': [['Mega Minion', '9'], ['Electro Wizard', '3'], ['Arrows', '11'], ['Lightning', '5'], ['Tombstone', '9'], ['The Log', '2'], ['Giant', '9'], ['Bowler', '5']], 'trophy': '4258', 'clan': 'TwoFiveOne', 'name': 'gpa raid'}, 'left': {'deck': [['Fireball', '9'], ['Archers', '12'], ['Goblins', '12'], ['Minions', '11'], ['Bomber', '12'], ['The Log', '2'], ['Barbarians', '12'], ['Royal Giant', '13']], 'trophy': '4325', 'clan': 'battusai', 'name': 'Supr4'}}, 'type': 'ladder', 'result': ['2', '0'], 'time': '2017-07-12'},
{'players': {'right': {'deck': [['Ice Spirit', '10'], ['Valkyrie', '9'], ['Hog Rider', '9'], ['Inferno Tower', '9'], ['Goblins', '12'], ['Musketeer', '9'], ['Zap', '12'], ['Fireball', '9']], 'trophy': '4237', 'clan': 'The Wolves', 'name': 'TITAN'}, 'left': {'deck': [['Royal Giant', '13'], ['Ice Wizard', '2'], ['Bomber', '12'], ['Knight', '12'], ['Fireball', '9'], ['Barbarians', '12'], ['The Log', '2'], ['Archers', '12']], 'trophy': '4296', 'clan': 'battusai', 'name': 'Supr4'}}, 'type': 'ladder', 'result': ['1', '0'], 'time': '2017-07-12'},
{'players': {'right': {'deck': [['Miner', '3'], ['Ice Golem', '9'], ['Spear Goblins', '12'], ['Minion Horde', '12'], ['Inferno Tower', '8'], ['The Log', '2'], ['Skeleton Army', '6'], ['Fireball', '10']], 'trophy': '4300', 'clan': '@LA PERLA NEGRA', 'name': 'Victor'}, 'left': {'deck': [['Royal Giant', '13'], ['Ice Wizard', '2'], ['Bomber', '12'], ['Knight', '12'], ['Fireball', '9'], ['Barbarians', '12'], ['The Log', '2'], ['Archers', '12']], 'trophy': '4267', 'clan': 'battusai', 'name': 'Supr4'}}, 'type': 'ladder', 'result': ['0', '1'], 'time': '2017-07-12'}
]
  1. 从上述列表中创建一个数据框,该数据框将自动填充包含匹配项typetimeresult的信息的列:
df = pd.DataFrame(matches)
  1. 然后,使用一些简单的逻辑来填充包含比赛中左右球员的decktrophyclanname上的信息的列:
sides = ['right', 'left']
player_keys = ['deck', 'trophy', 'clan', 'name']

for side in sides:
    for key in player_keys:
        for i, row in df.iterrows():
            df[side + '_' + key] = df['players'].apply(lambda x: x[side][key])

df = df.drop('players', axis=1) # no longer need this after populating the other columns

df = df.iloc[:, ::-1] # made sense to display columns in order of player info from left to right,
                      # followed by general match info at the far right of the dataframe

结果数据框如下:

    left_name   left_clan   left_trophy   left_deck                                           right_name    right_clan  right_trophy    right_deck                                          type    time         result
0   Supr4       battusai           4325   [[Fireball, 9], [Archers, 12], [Goblins, 12], ...   gpa raid      TwoFiveOne          4258    [[Mega Minion, 9], [Electro Wizard, 3], [Arrow...   ladder  2017-07-12   [2, 0]
1   Supr4       battusai           4296   [[Royal Giant, 13], [Ice Wizard, 2], [Bomber, ...   TITAN The     Wolves              4237    [[Ice Spirit, 10], [Valkyrie, 9], [Hog Rider, ...   ladder  2017-07-12   [1, 0]
2   Supr4       battusai           4267   [[Royal Giant, 13], [Ice Wizard, 2], [Bomber, ...   Victor        @LA PERLA NEGRA     4300    [[Miner, 3], [Ice Golem, 9], [Spear Goblins, 1...   ladder  2017-07-12   [0, 1]

答案 2 :(得分:0)

  • 将示例放在名为test.txt的文件中,该文件将是几行词典。
    • 数据不是JSON格式,不需要转换为该格式。
  • 读入文件,这将使每一行成为str类型
  • 使用ast.literal_eval将其从str转换为dict类型
  • 使用pandas.json_normalizelist中的dicts转换为数据框
import pandas as pd
from ast import literal_eval

with open('test.txt', 'r', encoding='utf-8') as f:  # read in the file
    list_of_rows = [literal_eval(row) for row in f.readlines()]  # use a list comprehesion to convert each row from str to dict

# convert to a dataframe
df = pd.json_normalize(list_of_rows)

# display(df)
     type  result        time                                                                                                                           players.right.deck players.right.trophy players.right.clan players.right.name                                                                                                               players.left.deck players.left.trophy players.left.clan players.left.name
0  ladder  [2, 0]  2017-07-12                 [[Mega Minion, 9], [Electro Wizard, 3], [Arrows, 11], [Lightning, 5], [Tombstone, 9], [The Log, 2], [Giant, 9], [Bowler, 5]]                 4258         TwoFiveOne           gpa raid   [[Fireball, 9], [Archers, 12], [Goblins, 12], [Minions, 11], [Bomber, 12], [The Log, 2], [Barbarians, 12], [Royal Giant, 13]]                4325          battusai             Supr4
1  ladder  [1, 0]  2017-07-12               [[Ice Spirit, 10], [Valkyrie, 9], [Hog Rider, 9], [Inferno Tower, 9], [Goblins, 12], [Musketeer, 9], [Zap, 12], [Fireball, 9]]                 4237         The Wolves              TITAN  [[Royal Giant, 13], [Ice Wizard, 2], [Bomber, 12], [Knight, 12], [Fireball, 9], [Barbarians, 12], [The Log, 2], [Archers, 12]]                4296          battusai             Supr4
2  ladder  [0, 1]  2017-07-12  [[Miner, 3], [Ice Golem, 9], [Spear Goblins, 12], [Minion Horde, 12], [Inferno Tower, 8], [The Log, 2], [Skeleton Army, 6], [Fireball, 10]]                 4300    @LA PERLA NEGRA             Victor  [[Royal Giant, 13], [Ice Wizard, 2], [Bomber, 12], [Knight, 12], [Fireball, 9], [Barbarians, 12], [The Log, 2], [Archers, 12]]                4267          battusai             Supr4