我正在尝试从android接受单个用户输入,并预测个人是否患有癌症,我正在通过java中的API从weka应用朴素贝叶斯。我所有的功能都是分类的,因此我已将用户输入转换为String并试图将数据提供给Weka Attribute,例如本示例How to use date type in weka in java code?
但我收到错误,这是“错误是:java.lang.IllegalArgumentException异常:属性既不标称也不字符串”,的printStackTrace()从该代码行,其中i有评论引发此错误消息“//的printStackTrace从抛出错误此行”,请检查。我在我的代码中找不到任何错误,下面是我的代码,请帮助我解决此问题,谢谢!
public class MainActivity extends AppCompatActivity {
private Spinner spinner1,spinner3,spinner4,spinner5,spinner6,spinner7,spinner8,spinner9,spinner10,spinner11,spinner12;
private Button btnSubmit;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
addListenerOnButton();
addListenerOnSpinnerItemSelection();
}
// add items into spinner dynamically
public void addListenerOnSpinnerItemSelection() {
spinner1 = findViewById(R.id.spinner1);
spinner1.setOnItemSelectedListener(new CustomOnItemSelectedListener());
}
// get the selected dropdown list value
public void addListenerOnButton() {
spinner1 = findViewById(R.id.spinner1);
spinner3 = findViewById(R.id.spinner3);
spinner4 = findViewById(R.id.spinner4);
spinner5 = findViewById(R.id.spinner5);
spinner6 = findViewById(R.id.spinner6);
spinner7 = findViewById(R.id.spinner7);
spinner8 = findViewById(R.id.spinner8);
spinner9 = findViewById(R.id.spinner9);
spinner10 = findViewById(R.id.spinner10);
spinner11 = findViewById(R.id.spinner11);
spinner12 = findViewById(R.id.spinner12);
btnSubmit = findViewById(R.id.btnSubmit);
btnSubmit.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
String menarche = String.valueOf(spinner1.getSelectedItem());
String oral = String.valueOf(spinner3.getSelectedItem());
String diet = String.valueOf(spinner4.getSelectedItem());
String breast = String.valueOf(spinner5.getSelectedItem());
String cervical = String.valueOf(spinner6.getSelectedItem());
String history = String.valueOf(spinner7.getSelectedItem());
String education = String.valueOf(spinner8.getSelectedItem());
String aohusband = String.valueOf(spinner9.getSelectedItem());
String menopause = String.valueOf(spinner10.getSelectedItem());
String foodfat = String.valueOf(spinner11.getSelectedItem());
String abortion = String.valueOf(spinner12.getSelectedItem());
int counter = 0;
try {
int features = 12;
int num_instances = 1;
Attribute menarche1 = new Attribute("menarche11");
Attribute oral1 = new Attribute("oral11");
Attribute diet1 = new Attribute("diet11");
Attribute breast1 = new Attribute("breast11");
Attribute cervical1 = new Attribute("cervical11");
Attribute history1 = new Attribute("history11");
Attribute education1 = new Attribute("education11");
Attribute aohusband1 = new Attribute("aohusband11");
Attribute menopause1 = new Attribute("menopause11");
Attribute foodfat1 = new Attribute("foodfat11");
Attribute abortion1 = new Attribute("abortion11");
Attribute ovarian1 = new Attribute("ovarian11");
//FastVector fvwekaAttributes = new FastVector(features);
ArrayList<Attribute> fvwekaAttributes = new ArrayList<Attribute>(12);
fvwekaAttributes.add(0,menarche1);
fvwekaAttributes.add(1,oral1);
fvwekaAttributes.add(2,diet1);
fvwekaAttributes.add(3,breast1);
fvwekaAttributes.add(4,cervical1);
fvwekaAttributes.add(5,history1);
fvwekaAttributes.add(6,education1);
fvwekaAttributes.add(7,aohusband1);
fvwekaAttributes.add(8,menopause1);
fvwekaAttributes.add(9,foodfat1);
fvwekaAttributes.add(10,abortion1);
fvwekaAttributes.add(11,ovarian1);
Instances trainingset = new Instances("string",fvwekaAttributes,num_instances);
trainingset.setClassIndex(11);
Instance iExample = new DenseInstance(12);
//printStackTrace Throws error from this line
iExample.setValue(menarche1, 1);
iExample.setValue(oral1, 1);
iExample.setValue(diet1, 1);
iExample.setValue(breast1, 1);
iExample.setValue(cervical1, 1);
iExample.setValue(history1, 1);
iExample.setValue(education1, 1);
iExample.setValue(aohusband1, 1);
iExample.setValue(menopause1, 1);
iExample.setValue(foodfat1, 1);
iExample.setValue(abortion1, 1);
//iExample.setValue(ovarian1, "?");
trainingset.add(iExample);
Classifier cls = (Classifier) weka.core.SerializationHelper.read(getAssets().open("NaiveBayes.model"));
Toast.makeText(MainActivity.this, "hoynai ", Toast.LENGTH_LONG).show();
double pred = cls.classifyInstance(trainingset.instance(0));
int predict = (int) (pred*100);
Toast.makeText(MainActivity.this, "predicted probability: " + String.valueOf(predict) + "%", Toast.LENGTH_LONG).show();
} catch (Exception e) {
e.printStackTrace();
Toast.makeText(MainActivity.this, "error: " + String.valueOf(e) + "%", Toast.LENGTH_LONG).show();
}
}
});
}
}