白平衡从已知角度拍摄的照片

时间:2019-01-31 22:28:36

标签: python-3.x image-processing colors opencv3.0

“白平衡”是一个覆盖面很广的主题,但是我看到的大多数答案都涉及到整个图像的自动白平衡技术,而对于白,灰和黑的已知点却一无所知。从已知的角度来看,我似乎找不到许多涵盖白平衡的东西。我有一个脚本(如下),该脚本拍摄一张色卡(Spyder Checkr 48),并返回白色,20%灰色和黑色色卡块:

Color       L      A     B     sR   sG   sB   aR   aG   aB
Card White  96.04  2.16  2.6   249  242  238  247  242  237
20% Gray    80.44  1.17  2.05  202  198  195  199  196  193
Card Black  16.91  1.43  -0.81 43   41   43   46   46   47

问题:由于我知道图像特定部分的地面真实度LAB,sRGB和AdobeRGB值,因此什么是对图像进行白平衡的最佳方法?

Here is a link to the images I am working with.这是用于提取色卡块的代码(我目前在Windows python 3.7上运行该代码):

from __future__ import print_function
import cv2
import imutils
import numpy as np
from matplotlib import pyplot as plt
import os
import sys

image = cv2.imread("PATH_TO_IMAGE")
template = cv2.imread("PATH_TO_TEMPLATE")
rtemplate = cv2.imread("PATH_TO_RIGHT_TEMPLATE")


def sift(image):
    sift = cv2.xfeatures2d.SIFT_create()
    kp, des = sift.detectAndCompute(image, None)
    return kp, des

def sift_match(im1, im2, vis=False, save=False):
    MIN_MATCH_COUNT = 10
    FLANN_INDEX_KDTREE = 0
    kp1, des1 = sift(im1)
    kp2, des2 = sift(im2)

    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=7)

    search_params = dict(checks=100)

    flann = cv2.FlannBasedMatcher(index_params, search_params)

    matches = flann.knnMatch(des1, des2, k=2)

    # Need to draw only good matches, so create a mask
    matchesMask = [[0, 0] for i in range(len(matches))]

    if vis is True:
        draw_params = dict(matchColor=(0, 255, 0),
                           singlePointColor=(255, 0, 0),
                           matchesMask=matchesMask,
                           flags=0)

        im3 = cv2.drawMatchesKnn(im1, kp1, im2, kp2, matches, None, **draw_params)

        if save:
            cv2.imwrite("tempSIFT_Match.png", im3)

        plt.imshow(im3), plt.show()
    good = []
    for m, n in matches:
        if m.distance < 0.75 * n.distance:
            good.append(m)
    return kp1, des1, kp2, des2, good



def smartextractor(im1, im2, vis=False):

    # Detect features and compute descriptors.
    kp1, d1, kp2, d2, matches = sift_match(im1, im2, vis)
    kp1 = np.asarray(kp1)
    kp2 = np.asarray(kp2)

    # Extract location of good matches
    points1 = np.zeros((len(matches), 2), dtype=np.float32)
    points2 = np.zeros((len(matches), 2), dtype=np.float32)

    for i, match in enumerate(matches):
        points1[i, :] = kp1[match.queryIdx].pt
        points2[i, :] = kp2[match.trainIdx].pt

    # Find homography
    h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)

    if h is None:
        print("could not find homography")
        return None, None

    # Use homography
    height, width, channels = im2.shape
    im1Reg = cv2.warpPerspective(im1, h, (width, height))

    return im1Reg, h


def show_images(images, cols=1, titles=None):
    """
    Display a list of images in a single figure with matplotlib.
    """
    assert ((titles is None) or (len(images) == len(titles)))
    n_images = len(images)
    if titles is None: titles = ['Image (%d)' % i for i in range(1, n_images + 1)]
    fig = plt.figure()
    for n, (image, title) in enumerate(zip(images, titles)):
        a = fig.add_subplot(cols, np.ceil(n_images / float(cols)), n + 1)
        if image.ndim == 2:
            plt.gray()
        plt.imshow(image)
        a.set_title(title)
    fig.set_size_inches(np.array(fig.get_size_inches()) * n_images)
    plt.show()


def Sobel(img, bilateralFilter=True):
    # timestart = time.clock()
    try:
        img = cv2.imread(img, 0)
    except TypeError:
        None
    try:
        rheight, rwidth, rdepth = img.shape
        img1 = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    except ValueError:
        raise TypeError
    # cv2.imwrite('temp.png',img)
    _, s, v = cv2.split(img1)
    b, g, r = cv2.split(img)
    if bilateralFilter is True:
        s = cv2.bilateralFilter(s, 11, 17, 17)
        v = cv2.bilateralFilter(v, 11, 17, 17)
        b = cv2.bilateralFilter(b, 11, 17, 17)
        g = cv2.bilateralFilter(g, 11, 17, 17)
        r = cv2.bilateralFilter(r, 11, 17, 17)
    # calculate sobel in x,y,diagonal directions with the following kernels
    sobelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32)
    sobely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=np.float32)
    sobeldl = np.array([[0, 1, 2], [-1, 0, 1], [-2, -1, 0]], dtype=np.float32)
    sobeldr = np.array([[2, 1, 0], [1, 0, -1], [0, -1, -2]], dtype=np.float32)
    # calculate the sobel on value of hsv
    gx = cv2.filter2D(v, -1, sobelx)
    gy = cv2.filter2D(v, -1, sobely)
    gdl = cv2.filter2D(v, -1, sobeldl)
    gdr = cv2.filter2D(v, -1, sobeldr)
    # combine sobel on value of hsv
    xylrv = 0.25 * gx + 0.25 * gy + 0.25 * gdl + 0.25 * gdr

    # calculate the sobel on saturation of hsv
    sx = cv2.filter2D(s, -1, sobelx)
    sy = cv2.filter2D(s, -1, sobely)
    sdl = cv2.filter2D(s, -1, sobeldl)
    sdr = cv2.filter2D(s, -1, sobeldr)
    # combine sobel on value of hsv
    xylrs = 0.25 * sx + 0.25 * sy + 0.25 * sdl + 0.25 * sdr

    # combine value sobel and saturation sobel
    xylrc = 0.5 * xylrv + 0.5 * xylrs
    xylrc[xylrc < 6] = 0

    # calculate the sobel on value on green
    grx = cv2.filter2D(g, -1, sobelx)
    gry = cv2.filter2D(g, -1, sobely)
    grdl = cv2.filter2D(g, -1, sobeldl)
    grdr = cv2.filter2D(g, -1, sobeldr)
    # combine sobel on value on green
    xylrgr = 0.25 * grx + 0.25 * gry + 0.25 * grdl + 0.25 * grdr

    # calculate the sobel on blue
    bx = cv2.filter2D(b, -1, sobelx)
    by = cv2.filter2D(b, -1, sobely)
    bdl = cv2.filter2D(b, -1, sobeldl)
    bdr = cv2.filter2D(b, -1, sobeldr)
    # combine sobel on value on blue
    xylrb = 0.25 * bx + 0.25 * by + 0.25 * bdl + 0.25 * bdr

    # calculate the sobel on red
    rx = cv2.filter2D(r, -1, sobelx)
    ry = cv2.filter2D(r, -1, sobely)
    rdl = cv2.filter2D(r, -1, sobeldl)
    rdr = cv2.filter2D(r, -1, sobeldr)
    # combine sobel on value on red
    xylrr = 0.25 * rx + 0.25 * ry + 0.25 * rdl + 0.25 * rdr

    # combine value sobel and saturation sobel
    xylrrgb = 0.33 * xylrgr + 0.33 * xylrb + 0.33 * xylrr
    xylrrgb[xylrrgb < 6] = 0

    # combine HSV and RGB sobel outputs
    xylrc = 0.5 * xylrc + 0.5 * xylrrgb
    xylrc[xylrc < 6] = 0
    xylrc[xylrc > 25] = 255

    return xylrc

print("extracting image")
extractedImage, _ = smartextractor(image, template)

print("extracting right image")
rextractedImage, _ = smartextractor(extractedImage, rtemplate, vis=False)
grextractedImage = cv2.cvtColor(rextractedImage, cv2.COLOR_BGR2GRAY)
bfsobelImg = Sobel(rextractedImage)
sobelImg = Sobel(rextractedImage, bilateralFilter=False)
csobelImg = cv2.add(bfsobelImg, sobelImg)
csobelImg[csobelImg < 6] = 0
csobelImg[csobelImg > 18] = 255

csobelImg = csobelImg.astype(np.uint8)
img2 = csobelImg.copy()
ret, thresh = cv2.threshold(img2, 18, 255, 0)
contours = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

contours = imutils.grab_contours(contours)
contours = sorted(contours, key=cv2.contourArea, reverse=True)



count = 0
trigger = False
for c in contours:
    # approximate the contour
    peri = cv2.arcLength(c, True)
    contours[count] = cv2.approxPolyDP(c, 0.05 * peri, True)

    if len(contours[count]) == 4:
        if trigger is False:
            screenCnt = contours[count]
            trigger = True

    count += 1

tl = screenCnt[0]
tr = screenCnt[1]
bl = screenCnt[3]
br = screenCnt[2]

tLy, tLx = tl[0]
tRy, tRx = tr[0]
bLy, bLx = bl[0]
bRy, bRx = br[0]

ratio = .15
realSpace = (3/16)
boxwidth = int(((tRx - tLx) + (bRx - bLx))*.5 - (tLx + bLx)*.5)
boxheight = int(((bRy - tRy) + (bLy - tLy))*.5 - (tRy + tLy)*.5)
spaceWidth = int((boxwidth + boxheight)*.5*realSpace)
boxcenter = [int(((bRy - tRy)*.5 + (bLy - tLy)*.5)*.5), int(((tRx - tLx)*.5 + (bRx - bLx)*.5)*.5)]
roitl = [boxcenter[0] - int(ratio*boxheight), boxcenter[1] - int(ratio*boxwidth)]
roitr = [boxcenter[0] - int(ratio*boxheight), boxcenter[1] + int(ratio*boxwidth)]
roibl = [boxcenter[0] + int(ratio*boxheight), boxcenter[1] - int(ratio*boxwidth)]
roibr = [boxcenter[0] + int(ratio*boxheight), boxcenter[1] + int(ratio*boxwidth)]

spacing = int((boxwidth + boxheight)*.5)+spaceWidth
roiWhite = np.array((roitl, roitr, roibr, roibl))


roiGray = np.array(([roitl[1], roitl[0]+spacing*1], [roitr[1], roitr[0]+spacing*1],
                    [roibr[1], roibr[0]+spacing*1], [roibl[1], roibl[0]+spacing*1]))

roiBlack = np.array(([roitl[1], roitl[0]+spacing*6], [roitr[1], roitr[0]+spacing*6],
                     [roibr[1], roibr[0]+spacing*6], [roibl[1], roibl[0]+spacing*6]))

whiteAvgb, whiteAvgg, whiteAvgr, _ = cv2.mean(rextractedImage[(roitl[0]+spacing*0):(roibr[0]+spacing*0),
                                              roitl[1]:roibr[1]])
grayAvgb, grayAvgg, grayAvgr, _ = cv2.mean(rextractedImage[(roitl[0]+spacing*1):(roibr[0]+spacing*1),
                                           roitl[1]:roibr[1]])
blackAvgb, blackAvgg, blackAvgr, _ = cv2.mean(rextractedImage[(roitl[0]+spacing*6):(roibr[0]+spacing*6),
                                              roitl[1]:roibr[1]])

whiteROI = rextractedImage[(roitl[0]+spacing*0):(roibr[0]+spacing*0), roitl[1]:roibr[1]]
grayROI = rextractedImage[(roitl[0]+spacing*1):(roibr[0]+spacing*1), roitl[1]:roibr[1]]
blackROI = rextractedImage[(roitl[0]+spacing*6):(roibr[0]+spacing*6), roitl[1]:roibr[1]]
imageList = [whiteROI, grayROI, blackROI]
show_images(imageList, cols=1)

correctedImage = rextractedImage.copy()

whiteROI[:, :, 0] = whiteAvgb
whiteROI[:, :, 1] = whiteAvgg
whiteROI[:, :, 2] = whiteAvgr

grayROI[:, :, 0] = grayAvgb
grayROI[:, :, 1] = grayAvgg
grayROI[:, :, 2] = grayAvgr

blackROI[:, :, 0] = blackAvgb
blackROI[:, :, 1] = blackAvgg
blackROI[:, :, 2] = blackAvgr

imageList = [whiteROI, grayROI, blackROI]
show_images(imageList, cols=1)

# SPYDER COLOR CHECKR Values: http://www.bartneck.de/2017/10/24/patch-color-definitions-for-datacolor-spydercheckr-48/

blank = np.zeros_like(csobelImg)
maskedImg = blank.copy()
maskedImg = cv2.fillConvexPoly(maskedImg, roiWhite, 255)
maskedImg = cv2.fillConvexPoly(maskedImg, roiGray, 255)
maskedImg = cv2.fillConvexPoly(maskedImg, roiBlack, 255)

res = cv2.bitwise_and(rextractedImage, rextractedImage, mask=maskedImg)
# maskedImg = cv2.fillConvexPoly(maskedImg, roi2Black, 255)

cv2.drawContours(blank, contours, -1, 255, 3)

outputSquare = np.zeros_like(csobelImg)
cv2.drawContours(outputSquare, [screenCnt], -1, 255, 3)

imageList = [rextractedImage, grextractedImage, bfsobelImg, sobelImg, csobelImg, blank, outputSquare, maskedImg, res]
show_images(imageList, cols=3)

sys.exit() 

1 个答案:

答案 0 :(得分:1)

鉴于白色补丁的RGB值,可以通过除以该值来校正图像的白平衡。也就是说,应用线性变换使白色色块在三个通道中具有相同的电平:

lum = (whiteR + whiteG + whiteB)/3
imgR = imgR * lum / whiteR
imgG = imgG * lum / whiteG
imgB = imgB * lum / whiteB

乘以lum可以使平均强度保持不变。

lum的计算如果使用适当的权重会更好一些:0.2126、0.7152、0.0722,但我想保持简单。这只会在输入白色偏离标准的情况下有很大的不同。 ,在这种情况下,您还会遇到其他问题。)

请注意,该转换最适用于线性RGB空间。如果图像以sRGB或类似格式存储(来自相机的原始图像将是线性RGB,JPEG将是sRGB),则图像和白色的RGB值均应首先转换为线性RGB。有关方程式,请参见here

为了获得更高的精度,您还可以使用灰色色块的RGB值来应用以上内容。对于每个通道,取自白色和灰色色块的平均乘法因子(whiteR/lum),然后将其应用于图像。

在确定白色RGB值并校正白平衡之前,可以从图像中减去黑电平。这样可以改善对比度和色彩感知能力,但不能改善白平衡。

全色校正要复杂得多,我不再赘述。