如何处理来自嵌套熊猫DataFrame的分组数组?

时间:2019-01-29 16:53:11

标签: python pandas numpy

我有一系列嵌套的Pandas DataFrame,其中包含几个(数百个)数组,我想对不同嵌套级别的每个变量取平均值。

变量mydatadf包含一个非常简单的代表我的实际数据的示例。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

mydata = dict()
participant = ['participantA', 'participantB']
for p in participant:
    ses = dict()
    session = ['ses_1', 'ses_2']
    for s in session:
        series = dict()
        set = ['s_1', 's_2', 's_3']
        for se in set:
            reps = dict()
            rep = ['r_1', 'r_2', 'r_3', 'r_4', 'r_5']
            for r in rep:
                vars = dict()
                vars = {'var1': np.sin(np.random.rand(1000)*2),
                        'var2': np.sin(np.random.rand(1000)*2)}
                varsdf = pd.DataFrame(data=vars)
                reps[r] = vars
            series[se] = reps
        ses[s] = series
    mydata[p] = ses
mydatadf = pd.DataFrame(mydata)

如何有效地(例如)在嵌套级别var1repsseries和/或ses上平均participant

最终,我想绘制所有var1对象,并在任何所需的嵌套级别上用不同颜色的平均数据突出显示。

for p in mydatadf.keys():
    for ses in mydatadf[p].keys():
        for set in mydatadf[p][ses].keys():
            for rep in mydatadf[p][ses][set].keys():
                data = mydatadf[p][ses][set][rep]['var1']
                plt.plot(data)
plt.show()

1 个答案:

答案 0 :(得分:1)

您始终可以展平数据框并进行标准的分组操作(我不知道它是否是最佳选择,但它可以工作):

df = pd.io.json.json_normalize(mydata)   #this will give a nested dataframe
df_flat = pd.DataFrame(df.T.index.str.split('.').tolist()).assign(values=df.T.values)


df_flat.head(3)
>>   0      1    2    3     4  \
0  participantA  ses_1  s_1  r_1  var1   
1  participantA  ses_1  s_1  r_1  var2   
2  participantA  ses_1  s_1  r_2  var1   

                                              values  
0  [0.7267196257553268, 0.9822775511169437, 0.991...  
1  [0.6633676714415264, 0.2823588336690545, 0.977...  
2  [0.2211576389168905, 0.9399581790280525, 0.645...  

编辑:进行分组并应用函数(例如,均值):

# in this case I choose column 4, corresponding to 'var'.
# You can change the name of the column using df_flat.columns.rename
# note that I use np.hstack as you are dealing with a an array of arrays
column = 4   
df_flat.groupby(column)['Values'].apply(lambda x: np.hstack(x).mean())
>> 4
var1    0.707803
var2    0.707821
Name: Values, dtype: float64