解析数据流python模板时出错

时间:2019-01-29 10:29:03

标签: python google-cloud-dataflow pipeline

我正在设置一个Google Cloud Dataflow自定义模板,以从Google Cloud Storage中获取图像并将其转换并保存为tf格式(用于tensorflow)。

从VM或PC执行此管道时,它运行良好,但是将其作为Dataflow的作业提交会导致无法解析模板的错误。

slim = tf.contrib.slim

error_count = Metrics.counter('main', 'errorCount')
missing_label_count = Metrics.counter('main', 'missingLabelCount')
csv_rows_count = Metrics.counter('main', 'csvRowsCount')
labels_count = Metrics.counter('main', 'labelsCount')
labels_without_ids = Metrics.counter('main', 'labelsWithoutIds')
existing_file = Metrics.counter('main', 'existingFile')
non_existing_file = Metrics.counter('main', 'nonExistingFile')
skipped_empty_line = Metrics.counter('main', 'skippedEmptyLine')
embedding_good = Metrics.counter('main', 'embedding_good')
embedding_bad = Metrics.counter('main', 'embedding_bad')
incompatible_image = Metrics.counter('main', 'incompatible_image')
invalid_uri = Metrics.counter('main', 'invalid_file_name')
unlabeled_image = Metrics.counter('main', 'unlabeled_image')
unknown_label = Metrics.counter('main', 'unknown_label')


class Default(object):
  """Default values of variables."""
  FORMAT = 'jpeg'

  # Make sure to update the default checkpoint file if using another
  # inception graph or when a newer checkpoint file is available. See
  # https://research.googleblog.com/2016/08/improving-inception-and-image.html
  IMAGE_GRAPH_CHECKPOINT_URI = (
      'gs://cloud-ml-data/img/flower_photos/inception_v3_2016_08_28.ckpt')


class ExtractLabelIdsDoFn(beam.DoFn):
  """Extracts (uri, label_ids) tuples from CSV rows.
  """

  def start_bundle(self, context=None):
    self.label_to_id_map = {}

  # The try except is for compatiblity across multiple versions of the sdk
  def process(self, row, all_labels):
    try:
      row = row.element
    except AttributeError:
      pass
    if not self.label_to_id_map:
      for i, label in enumerate(all_labels):
        label = label.strip()
        if label:
          self.label_to_id_map[label] = i

    # Row format is: image_uri(,label_ids)*
    if not row:
      skipped_empty_line.inc()
      return

    csv_rows_count.inc()
    uri = row[0]
    if not uri or not uri.startswith('gs://'):
      invalid_uri.inc()
      return

    # In a real-world system, you may want to provide a default id for labels
    # that were not in the dictionary.  In this sample, we simply skip it.
    # This code already supports multi-label problems if you want to use it.
    label_ids = []
    for label in row[1:]:
      try:
        label_ids.append(self.label_to_id_map[label.strip()])
      except KeyError:
        unknown_label.inc()

    labels_count.inc(len(label_ids))

    if not label_ids:
      unlabeled_image.inc()
    yield row[0], label_ids


class ReadImageAndConvertToJpegDoFn(beam.DoFn):
  """Read files from GCS and convert images to JPEG format.

  We do this even for JPEG images to remove variations such as different number
  of channels.
  """

  def process(self, element):
    try:
      uri, label_ids = element.element
    except AttributeError:
      uri, label_ids = element

    # TF will enable 'rb' in future versions, but until then, 'r' is
    # required.
    def _open_file_read_binary(uri):
      try:
        return file_io.FileIO(uri, mode='rb')
      except errors.InvalidArgumentError:
        return file_io.FileIO(uri, mode='r')

    try:
      with _open_file_read_binary(uri) as f:
        image_bytes = f.read()
        img = Image.open(io.BytesIO(image_bytes)).convert('RGB')

    # A variety of different calling libraries throw different exceptions here.
    # They all correspond to an unreadable file so we treat them equivalently.
    except Exception as e:  # pylint: disable=broad-except
      logging.exception('Error processing image %s: %s', uri, str(e))
      error_count.inc()
      return

    # Convert to desired format and output.
    output = io.BytesIO()
    img.save(output, Default.FORMAT)
    image_bytes = output.getvalue()
    yield uri, label_ids, image_bytes


class EmbeddingsGraph(object):
  """Builds a graph and uses it to extract embeddings from images.
  """

  # These constants are set by Inception v3's expectations.
  WIDTH = 299
  HEIGHT = 299
  CHANNELS = 3

  def __init__(self, tf_session):
    self.tf_session = tf_session
    # input_jpeg is the tensor that contains raw image bytes.
    # It is used to feed image bytes and obtain embeddings.
    self.input_jpeg, self.embedding = self.build_graph()

    init_op = tf.global_variables_initializer()
    self.tf_session.run(init_op)
    self.restore_from_checkpoint(Default.IMAGE_GRAPH_CHECKPOINT_URI)

  def build_graph(self):
    """Forms the core by building a wrapper around the inception graph.

      Here we add the necessary input & output tensors, to decode jpegs,
      serialize embeddings, restore from checkpoint etc.

      To use other Inception models modify this file. Note that to use other
      models beside Inception, you should make sure input_shape matches
      their input. Resizing or other modifications may be necessary as well.
      See tensorflow/contrib/slim/python/slim/nets/inception_v3.py for
      details about InceptionV3.

    Returns:
      input_jpeg: A tensor containing raw image bytes as the input layer.
      embedding: The embeddings tensor, that will be materialized later.
    """

    input_jpeg = tf.placeholder(tf.string, shape=None)
    image = tf.image.decode_jpeg(input_jpeg, channels=self.CHANNELS)

    # Note resize expects a batch_size, but we are feeding a single image.
    # So we have to expand then squeeze.  Resize returns float32 in the
    # range [0, uint8_max]
    image = tf.expand_dims(image, 0)

    # convert_image_dtype also scales [0, uint8_max] -> [0 ,1).
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    image = tf.image.resize_bilinear(
        image, [self.HEIGHT, self.WIDTH], align_corners=False)

    # Then rescale range to [-1, 1) for Inception.
    image = tf.subtract(image, 0.5)
    inception_input = tf.multiply(image, 2.0)

    # Build Inception layers, which expect a tensor of type float from [-1, 1)
    # and shape [batch_size, height, width, channels].
    with slim.arg_scope(inception.inception_v3_arg_scope()):
      _, end_points = inception.inception_v3(inception_input, is_training=False)

    embedding = end_points['PreLogits']
    return input_jpeg, embedding

  def restore_from_checkpoint(self, checkpoint_path):
    """To restore inception model variables from the checkpoint file.

       Some variables might be missing in the checkpoint file, so it only
       loads the ones that are avialable, assuming the rest would be
       initialized later.
    Args:
      checkpoint_path: Path to the checkpoint file for the Inception graph.
    """
    # Get all variables to restore. Exclude Logits and AuxLogits because they
    # depend on the input data and we do not need to intialize them from
    # checkpoint.
    all_vars = tf.contrib.slim.get_variables_to_restore(
        exclude=['InceptionV3/AuxLogits', 'InceptionV3/Logits', 'global_step'])

    saver = tf.train.Saver(all_vars)
    saver.restore(self.tf_session, checkpoint_path)

  def calculate_embedding(self, batch_image_bytes):
    """Get the embeddings for a given JPEG image.

    Args:
      batch_image_bytes: As if returned from [ff.read() for ff in file_list].

    Returns:
      The Inception embeddings (bottleneck layer output)
    """
    return self.tf_session.run(
        self.embedding, feed_dict={self.input_jpeg: batch_image_bytes})


class TFExampleFromImageDoFn(beam.DoFn):
  """Embeds image bytes and labels, stores them in tensorflow.Example.

  (uri, label_ids, image_bytes) -> (tensorflow.Example).

  Output proto contains 'label', 'image_uri' and 'embedding'.
  The 'embedding' is calculated by feeding image into input layer of image
  neural network and reading output of the bottleneck layer of the network.

  Attributes:
    image_graph_uri: an uri to gcs bucket where serialized image graph is
                     stored.
  """

  def __init__(self):
    self.tf_session = None
    self.graph = None
    self.preprocess_graph = None

  def start_bundle(self, context=None):
    # There is one tensorflow session per instance of TFExampleFromImageDoFn.
    # The same instance of session is re-used between bundles.
    # Session is closed by the destructor of Session object, which is called
    # when instance of TFExampleFromImageDoFn() is destructed.
    if not self.graph:
      self.graph = tf.Graph()
      self.tf_session = tf.InteractiveSession(graph=self.graph)
      with self.graph.as_default():
        self.preprocess_graph = EmbeddingsGraph(self.tf_session)

  def process(self, element):

    def _bytes_feature(value):
      return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))

    def _float_feature(value):
      return tf.train.Feature(float_list=tf.train.FloatList(value=value))

    try:
      element = element.element
    except AttributeError:
      pass
    uri, label_ids, image_bytes = element

    try:
      embedding = self.preprocess_graph.calculate_embedding(image_bytes)
    except errors.InvalidArgumentError as e:
      incompatible_image.inc()
      logging.warning('Could not encode an image from %s: %s', uri, str(e))
      return

    if embedding.any():
      embedding_good.inc()
    else:
      embedding_bad.inc()

    example = tf.train.Example(features=tf.train.Features(feature={
        'image_uri': _bytes_feature([uri]),
        'embedding': _float_feature(embedding.ravel().tolist()),
    }))

    if label_ids:
      label_ids.sort()
      example.features.feature['label'].int64_list.value.extend(label_ids)

    yield example


def configure_pipeline(p, opt):
  """Specify PCollection and transformations in pipeline."""
  read_input_source = beam.io.ReadFromText(
      opt.input_path, strip_trailing_newlines=True)
  read_label_source = beam.io.ReadFromText(
      opt.input_dict, strip_trailing_newlines=True)
  labels = (p | 'Read dictionary' >> read_label_source)
  _ = (p
       | 'Read input' >> read_input_source
       | 'Parse input' >> beam.Map(lambda line: csv.reader([line]).next())
       | 'Extract label ids' >> beam.ParDo(ExtractLabelIdsDoFn(),
                                           beam.pvalue.AsIter(labels))
       | 'Read and convert to JPEG'
       >> beam.ParDo(ReadImageAndConvertToJpegDoFn())
       | 'Embed and make TFExample' >> beam.ParDo(TFExampleFromImageDoFn())
       # TODO(b/35133536): Get rid of this Map and instead use
       # coder=beam.coders.ProtoCoder(tf.train.Example) in WriteToTFRecord
       # below.
       | 'SerializeToString' >> beam.Map(lambda x: x.SerializeToString())
       | 'Save to disk'
       >> beam.io.WriteToTFRecord(opt.output_path,
                                  file_name_suffix='.tfrecord.gz'))


def run(in_args=None):
  """Runs the pre-processing pipeline."""

  pipeline_options = PipelineOptions.from_dictionary(vars(in_args))
  with beam.Pipeline(options=pipeline_options) as p:
    configure_pipeline(p, in_args)


def default_args(argv):
  """Provides default values for Workflow flags."""
  parser = argparse.ArgumentParser()

  parser.add_argument(
      '--input_path',
      required=True,
      help='Input specified as uri to CSV file. Each line of csv file '
      'contains colon-separated GCS uri to an image and labels.')
  parser.add_argument(
      '--input_dict',
      dest='input_dict',
      required=True,
      help='Input dictionary. Specified as text file uri. '
      'Each line of the file stores one label.')
  parser.add_argument(
      '--output_path',
      required=True,
      help='Output directory to write results to.')
  parser.add_argument(
      '--project',
      default='ikioo-160019',
      type=str,
      help='The cloud project name to be used for running this pipeline')

  parser.add_argument(
      '--job_name',
      type=str,
      default='ikioo-AI-hub-' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S'),
      help='A unique job identifier.')
  parser.add_argument(
      '--num_workers', default=20, type=int, help='The number of workers.')
  parser.add_argument('--cloud', default=True, action='store_true')
  parser.add_argument(
      '--runner',
      help='See Dataflow runners, may be blocking'
      ' or not, on cloud or not, etc.')

  parsed_args, _ = parser.parse_known_args(argv)

  if parsed_args.cloud:
    # Flags which need to be set for cloud runs.
    default_values = {
        'project':
            # get_cloud_project(),
            'ikioo-160019',
        'temp_location':
            os.path.join(os.path.dirname(parsed_args.output_path), 'temp'),
        'runner':
            'DataflowRunner',
        'save_main_session':
            True,
    }
  else:
    # Flags which need to be set for local runs.
    default_values = {
        'runner': 'DirectRunner',
    }

  for kk, vv in default_values.iteritems():
    if kk not in parsed_args or not vars(parsed_args)[kk]:
      vars(parsed_args)[kk] = vv

  return parsed_args


def get_cloud_project():
  """Get GCP cloud project information."""
  cmd = [
      'gcloud', '-q', 'config', 'list', 'project',
      '--format=value(core.project)'
  ]
  with open(os.devnull, 'w') as dev_null:
    try:
      res = subprocess.check_output(cmd, stderr=dev_null).strip()
      if not res:
        raise Exception('--cloud specified but no Google Cloud Platform '
                        'project found.\n'
                        'Please specify your project name with the --project '
                        'flag or set a default project: '
                        'gcloud config set project YOUR_PROJECT_NAME')
      return res
    except OSError as e:
      if e.errno == errno.ENOENT:
        raise Exception('gcloud is not installed. The Google Cloud SDK is '
                        'necessary to communicate with the Cloud ML service. '
                        'Please install and set up gcloud.')
      raise


def main(argv):
  arg_dict = default_args(argv)
  run(arg_dict)


if __name__ == '__main__':
  main(sys.argv[1:])

0 个答案:

没有答案