我有一个巨大的数据库(行数超过65M),并且我发现有些单元格放错了位置。例如,假设我有这个:
library("tidyverse")
DATA <- tribble(
~SURNAME,~NAME,~STATE,~COUNTRY,
'Smith','Emma','California','USA',
'Johnson','Oliia','Texas','USA',
'Williams','James','USA','California',
'Jones','Noah','Pennsylvania','USA',
'Williams','Liam','Illinois','USA',
'Brown','Sophia','USA','Louisiana',
'Daves','Evelyn','USA','Oregon',
'Miller','Jacob','New Mexico','USA',
'Williams','Lucas','Connecticut','USA',
'Daves','John','California','USA',
'Jones','Carl','USA','Illinois'
)
=====
> DATA
# A tibble: 11 x 4
SURNAME NAME STATE COUNTRY
<chr> <chr> <chr> <chr>
1 Smith Emma California USA
2 Johnson Oliia Texas USA
3 Williams James USA California
4 Jones Noah Pennsylvania USA
5 Williams Liam Illinois USA
6 Brown Sophia USA Louisiana
7 Daves Evelyn USA Oregon
8 Miller Jacob New Mexico USA
9 Williams Lucas Connecticut USA
10 Daves John California USA
11 Jones Carl USA Illinois
如您所见,“国家”和“州”在某些行中错位了,我该如何有效地交换这些行?
亲切的问候, 路易斯。
答案 0 :(得分:2)
使用data.table
和内置state.name
向量:
setDT(DATA)
DATA[COUNTRY %in% state.name, `:=`(COUNTRY = STATE, STATE = COUNTRY)]
DATA
# SURNAME NAME STATE COUNTRY
# 1: Smith Emma California USA
# 2: Johnson Oliia Texas USA
# 3: Williams James California USA
# 4: Jones Noah Pennsylvania USA
# 5: Williams Liam Illinois USA
# 6: Brown Sophia Louisiana USA
# 7: Daves Evelyn Oregon USA
# 8: Miller Jacob New Mexico USA
# 9: Williams Lucas Connecticut USA
# 10: Daves John California USA
# 11: Jones Carl Illinois USA
答案 1 :(得分:1)
检查此解决方案(假设COUNTRY
列采用ISO3格式,例如MEX,CAN):
DATA %>%
mutate(
COUNTRY_TMP = if_else(str_detect(COUNTRY, '[A-Z]{3}'), COUNTRY, STATE),
STATE = if_else(str_detect(COUNTRY, '[A-Z]{3}'), STATE, COUNTRY),
COUNTRY = COUNTRY_TMP
) %>%
select(-COUNTRY_TMP)
答案 2 :(得分:0)
假设所有国家/地区名称均遵循ISO3格式,我们可以首先安装countrycode
软件包。在此程序包中,有一个名为codelist
的数据框,其中的列iso3c
带有ISO3国家/地区名称。我们可以使用以下方法交换国家名称。
library(tidyverse)
library(countrycode)
DATA2 <- DATA %>%
mutate(STATE2 = ifelse(STATE %in% codelist$iso3c &
!COUNTRY %in% codelist$iso3c, COUNTRY, STATE),
COUNTRY2 = ifelse(!STATE %in% codelist$iso3c &
COUNTRY %in% codelist$iso3c, COUNTRY, STATE)) %>%
select(-STATE, -COUNTRY) %>%
rename(STATE = STATE2, COUNTRY = COUNTRY2)
DATA2
# # A tibble: 11 x 4
# SURNAME NAME STATE COUNTRY
# <chr> <chr> <chr> <chr>
# 1 Smith Emma California USA
# 2 Johnson Oliia Texas USA
# 3 Williams James California USA
# 4 Jones Noah Pennsylvania USA
# 5 Williams Liam Illinois USA
# 6 Brown Sophia Louisiana USA
# 7 Daves Evelyn Oregon USA
# 8 Miller Jacob New Mexico USA
# 9 Williams Lucas Connecticut USA
# 10 Daves John California USA
# 11 Jones Carl Illinois USA