假设我有一个在数字和字符串之间混合的值向量,如下所示:
df<-structure(c("Location", "SKU", "Manufacturer", "Size",
"State", "43488", "43489", "43490",
"43491"), .Names = c("col1","col2","col3","col4","col5","col6","col7","col8","col9"))
我只想将数字值(最初是Excel日期)转换为R日期格式,而其余变量保持原样。我正在使用的向量在较大的data.frame中只是一行,所以我宁愿避免将日期从字符串中拆分并随后合并。 到目前为止,我尝试了以下方法:
as.Date(as.numeric(df), origin = "1899-12-30")
[1] NA NA NA NA NA "2019-01-23" "2019-01-24" "2019-01-25" "2019-01-26"
但是这会将字符串转换为NA。
答案 0 :(得分:2)
我们可以找出其中包含数字的索引,然后仅将这些值转换为日期。
DB::select("SELECT * FROM my_table WHERE vendor_id IN (" . implode(array_keys($vendors), ',') . ")",
$vendors);
使用inds <- grepl("\\d+", df)
df[inds] <- format(as.Date(as.numeric(df[inds]), origin = "1899-12-30"))
df
# col1 col2 col3 col4 col5
#"Location" "SKU" "Manufacturer" "Size" "State"
# col6 col7 col8 col9
#"2019-01-23" "2019-01-24" "2019-01-25" "2019-01-26"
对上述答案的一种变体,而没有创建其他变量(ifelse
)
inds
答案 1 :(得分:1)
尝试一下:
-创建一个函数来检查值是否可以强制为numeric
类型
-如果为true
,则将其转换为numeric
并将其格式化为date
-如果为false
,则按原样返回值
df<-structure(c("Location", "SKU", "Manufacturer", "Size",
"State", "43488", "43489", "43490",
"43491"), .Names = c("col1","col2","col3","col4","col5","col6","col7","col8","col9"))
convert_num_to_date = function(x){
if (is.na(as.numeric(x))) {
return(x)
} else {
x = format(as.Date(as.numeric(x), origin = "1899-12-30"))
return(x)
}
}
df = sapply(df, convert_num_to_date)