我有一个结构如下的模型,我想在忽略随机效应的情况下提取预测值。如?predict.gam
和here中所指定,我正在使用exclude
自变量,但出现错误。我的错误在哪里?
dt <- data.frame(n1 = runif(500, min=0, max=1),
n2 = rep(1:10,50),
n3 = runif(500, min=0, max=2),
n4 = runif(500, min=0, max=2),
c1 = factor(rep(c("X","Y"),250)),
c2 = factor(rep(c("a", "b", "c", "d", "e"), 100)))
mod = gam(n1 ~
s(n2, n3, n4, by=c1) +
s(c2, bs="re"),
data=dt)
newd=data.table(expand.grid(n1=seq(min(dt$n1), max(dt$n1), 0.5),
n2=1:10,
n3=seq(min(dt$n3), max(dt$n3), 0.5),
n4=seq(min(dt$n4), max(dt$n4), 0.5),
c1=c("X", "Y")))
newd$pred <- predict.gam(mod, newd, exclude = "s(c2)")
In predict.gam(mod, newd, exclude = "s(c2)"): not all required variables have been supplied in newdata!
答案 0 :(得分:1)
exclude
不能像您想象的那样工作。您仍然需要在newd
的{{1}}中提供所有变量。请参阅我的this answer,了解predict.gam
后面的内容。
这是您需要做的:
predict.gam