mgcv:如何在predict.gam中使用“排除”参数?

时间:2019-01-28 23:37:37

标签: r regression predict gam mgcv

我有一个结构如下的模型,我想在忽略随机效应的情况下提取预测值。如?predict.gamhere中所指定,我正在使用exclude自变量,但出现错误。我的错误在哪里?

dt <- data.frame(n1 = runif(500, min=0, max=1),
             n2 = rep(1:10,50), 
             n3 = runif(500, min=0, max=2),
             n4 = runif(500, min=0, max=2),
             c1 = factor(rep(c("X","Y"),250)),
             c2 = factor(rep(c("a", "b", "c", "d", "e"), 100)))

mod = gam(n1 ~ 
           s(n2, n3, n4, by=c1) +
           s(c2, bs="re"),
         data=dt)

newd=data.table(expand.grid(n1=seq(min(dt$n1), max(dt$n1), 0.5), 
                        n2=1:10,
                        n3=seq(min(dt$n3), max(dt$n3), 0.5),
                        n4=seq(min(dt$n4), max(dt$n4), 0.5),
                        c1=c("X", "Y")))
newd$pred <- predict.gam(mod, newd, exclude = "s(c2)")

In predict.gam(mod, newd, exclude = "s(c2)"): not all required variables have been supplied in  newdata! 

1 个答案:

答案 0 :(得分:1)

exclude不能像您想象的那样工作。您仍然需要在newd的{​​{1}}中提供所有变量。请参阅我的this answer,了解predict.gam后面的内容。

这是您需要做的:

predict.gam