我在我的预处理与pd.get_dummies数据集,但结果不是我所需要的。
使用pd.get_dummies()是否正确? 还是我可以尝试的任何方法?
import pandas as pd
rawdataset=[['apple','banana','carrot','daikon','egg'],
['apple','banana'],
['apple','banana','carrot'],
['daikon','egg','fennel'],
['apple','banana','daikon']]
dataset=pd.DataFrame(data=rawdataset)
print(pd.get_dummies(dataset))
我希望它看起来像这样:
apple banana carrot daikon egg fennel
0 1 1 1 1 1 0
1 1 1 0 0 0 0
........
不是这样的:
0_apple 0_daikon 1_banana 1_egg 2_carrot 2_daikon 2_fennel
0 1 0 1 0 1 0 0
1 1 0 1 0 0 0 0
....
答案 0 :(得分:1)
用不同的方法给猫皮。
pd.get_dummies
和max
pd.get_dummies(dataset, prefix="", prefix_sep="").max(level=0, axis=1)
apple daikon banana egg carrot fennel
0 1 1 1 1 1 0
1 1 0 1 0 0 0
2 1 0 1 0 1 0
3 0 1 0 1 0 1
4 1 1 1 0 0 0
stack
,str.get_dummies
和sum
/ max
:
df.stack().str.get_dummies().sum(level=0)
apple banana carrot daikon egg fennel
0 1 1 1 1 1 0
1 1 1 0 0 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 1
4 1 1 0 1 0 0
stack
和crosstab
u = df.stack()
pd.crosstab(u.index.get_level_values(0), u)
col_0 apple banana carrot daikon egg fennel
row_0
0 1 1 1 1 1 0
1 1 1 0 0 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 1
4 1 1 0 1 0 0
答案 1 :(得分:0)
您在这里:
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
rawdataset=[['apple','banana','carrot','daikon','egg'],
['apple','banana'],
['apple','banana','carrot'],
['daikon','egg','fennel'],
['apple','banana','daikon']]
def dummy(doc):
return doc
count_vec = CountVectorizer(tokenizer=dummy, preprocessor=dummy)
count_vec.fit(rawdataset)
X = count_vec.transform(rawdataset).todense()
pd.DataFrame(X, columns=count_vec.get_feature_names())
结果:
apple banana carrot daikon egg fennel
0 1 1 1 1 1 0
1 1 1 0 0 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 1
4 1 1 0 1 0 0
这里的附加好处是您还可以将其应用于看不见的数据,因为pd.get_dummies
不能以相同的方式转换其他看不见的测试数据。
尝试:
unseen_raw_data = [["test"]]
feature_names = count_vec.get_feature_names()
unseen_data = count_vec.transform(unseen_raw_data).todense()
pd.DataFrame(unseen_data, columns=feature_names)
产量:
apple banana carrot daikon egg fennel
0 0 0 0 0 0 0
这是正确的输出