我想在宽度为128、256或512位的CPU寄存器(xmm,ymm或zmm)上对单个位,成对的位和半字节(4位)进行任意排列;这应该尽可能快。 为此,我正在研究SIMD指令。有谁知道做这个的方法/实现它的库吗?我在Windows上使用MSVC,在Linux上使用GCC,主机语言为C或C ++。 谢谢!
我有一个任意的排列,需要重新排列大量的位向量/成对的位向量/半字节。我知道如何对64位值中的位执行此操作,例如using a Benes network。
或者在较宽的SIMD寄存器上改组8位或更大的块,例如使用Agner Fog的GPLed VectorClass库(https://www.agner.org/optimize/vectorclass.pdf)进行模板元编程,该功能可将shx作为模板参数,从AVX2车道内字节shuffle和/或大元素车道交叉shuffle中构建shuffle。
尽管如此,要在更宽的向量上实现更细粒度的细分(分为1、2或4位块)似乎很困难。
我可以对排列进行预处理,例如提取位掩码,根据需要计算索引,例如对于Benes网络或其他任何网络,也很乐意使用另一种高级语言来执行此操作,因此,假定以最方便解决问题的任何格式给出排列;包括小型查询表。
我希望代码比做类似的事情要快得多
// actually 1 bit per element, not byte. I want a 256-bit bit-shuffle
const uint8_t in[256] = get_some_vector(); // not a compile-time constant
const uint8_t perm[256] = ...; // compile-time constant
uint8_t out[256];
for (size_t i = 0; i < 256; i ++)
out[i] = in[perm[i]];
正如我所说,我有一个<= 64位(这将是64位,32位对和16个半字节)的解决方案。对于更宽的SIMD寄存器上大小为8、16、32等的块,也可以解决该问题。
编辑:为澄清起见,置换是一个编译时常量(但不仅是一个特定的常量,每个置换我都会编译一次程序)。
答案 0 :(得分:5)
AVX2 256位排列情况
我认为不可能编写出有效的通用SSE4 / AVX2 / AVX-512算法 适用于所有矢量大小(128、256、512位)和元素粒度(位, 位对,半字节,字节)。一个问题是存在许多AVX2指令 例如,对于字节大小的元素,对于双字元素不存在, 反之亦然。
下面讨论了AVX2 256位置换情况。 可能有可能在其他情况下回收该案例的想法。
想法是从输入向量x
中每步提取32个(置换)位。
在每个步骤中,从置换向量pos
读取32个字节。
这些pos
字节的第7..3位确定需要从x
中的哪个字节开始。
右字节由仿真的256位宽的AVX2通道交叉字节选择
随机播放coded here by Ermlg。
pos
字节的2..0位确定要查找的位。
使用_mm256_movemask_epi8
,将32位收集到一个_uint32_t
中
重复此步骤8次,以获取所有256个置换位。
代码看起来不太优雅。不过,我会感到惊讶 如果速度显着提高(例如快两倍),则将存在AVX2方法。
/* gcc -O3 -m64 -Wall -mavx2 -march=skylake bitperm_avx2.c */
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>
inline __m256i shuf_epi8_lc(__m256i value, __m256i shuffle);
int print_epi64(__m256i a);
uint32_t get_32_bits(__m256i x, __m256i pos){
__m256i pshufb_mask = _mm256_set_epi8(0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1, 0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1);
__m256i byte_pos = _mm256_srli_epi32(pos, 3); /* which byte within the 32 bytes */
byte_pos = _mm256_and_si256(byte_pos, _mm256_set1_epi8(0x1F)); /* mask off the unwanted bits */
__m256i bit_pos = _mm256_and_si256(pos, _mm256_set1_epi8(0x07)); /* which bit within the byte */
__m256i bit_pos_mask = _mm256_shuffle_epi8(pshufb_mask, bit_pos); /* get bit mask */
__m256i bytes_wanted = shuf_epi8_lc(x, byte_pos); /* get the right bytes */
__m256i bits_wanted = _mm256_and_si256(bit_pos_mask, bytes_wanted); /* apply the bit mask to get rid of the unwanted bits within the byte */
__m256i bits_x8 = _mm256_cmpeq_epi8(bits_wanted, bit_pos_mask); /* check if the bit is set */
return _mm256_movemask_epi8(bits_x8);
}
__m256i get_256_bits(__m256i x, uint8_t* pos){ /* glue the 32 bit results together */
uint64_t t0 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[0]));
uint64_t t1 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[32]));
uint64_t t2 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[64]));
uint64_t t3 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[96]));
uint64_t t4 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[128]));
uint64_t t5 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[160]));
uint64_t t6 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[192]));
uint64_t t7 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[224]));
uint64_t t10 = (t1<<32)|t0;
uint64_t t32 = (t3<<32)|t2;
uint64_t t54 = (t5<<32)|t4;
uint64_t t76 = (t7<<32)|t6;
return(_mm256_set_epi64x(t76, t54, t32, t10));
}
inline __m256i shuf_epi8_lc(__m256i value, __m256i shuffle){
/* Ermlg's lane crossing byte shuffle https://stackoverflow.com/a/30669632/2439725 */
const __m256i K0 = _mm256_setr_epi8(
0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70,
0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0);
const __m256i K1 = _mm256_setr_epi8(
0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0,
0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70);
return _mm256_or_si256(_mm256_shuffle_epi8(value, _mm256_add_epi8(shuffle, K0)),
_mm256_shuffle_epi8(_mm256_permute4x64_epi64(value, 0x4E), _mm256_add_epi8(shuffle, K1)));
}
int main(){
__m256i input = _mm256_set_epi16(0x1234,0x9876,0x7890,0xABCD, 0x3456,0x7654,0x0123,0x4567,
0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210);
/* Example */
/* 240 224 208 192 176 160 144 128 112 96 80 64 48 32 16 0 */
/* input 1234 9876 7890 ABCD | 3456 7654 0123 4567 | 0123 4567 89AB CDEF | FEDC BA98 7654 3210 */
/* output 0000 0000 0012 00FF | 90AB 3210 7654 ABCD | 8712 1200 FF90 AB32 | 7654 ABCD 1087 7654 */
uint8_t permutation[256] = {16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
28,29,30,31, 32,33,34,35, 0,1,2,3, 4,5,6,7,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
160,161,162,163, 164,165,166,167, 168,169,170,171, 172,173,174,175,
8,9,10,11, 12,13,14,15, 200,201,202,203, 204,205,206,207,
208,209,210,211, 212,213,214,215, 215,215,215,215, 215,215,215,215,
1,1,1,1, 1,1,1,1, 248,249,250,251, 252,253,254,255,
248,249,250,251, 252,253,254,255, 28,29,30,31, 32,33,34,35,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
160,161,162,163, 164,165,166,167, 168,169,170,171, 172,173,174,175,
0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15,
200,201,202,203, 204,205,206,207, 208,209,210,211, 212,213,214,215,
215,215,215,215, 215,215,215,215, 1,1,1,1, 1,1,1,1,
248,249,250,251, 252,253,254,255, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1};
printf("input = \n");
print_epi64(input);
__m256i x = get_256_bits(input, permutation);
printf("permuted input = \n");
print_epi64(x);
return 0;
}
int print_epi64(__m256i a){
uint64_t v[4];
int i;
_mm256_storeu_si256((__m256i*)v,a);
for (i = 3; i>=0; i--) printf("%016lX ",v[i]);
printf("\n");
return 0;
}
带有示例排列的输出看起来正确:
$ ./a.out
input =
123498767890ABCD 3456765401234567 0123456789ABCDEF FEDCBA9876543210
permuted input =
00000000001200FF 90AB32107654ABCD 87121200FF90AB32 7654ABCD10877654
效率
如果仔细看一下算法,您会发现仅某些操作
取决于排列向量pos
,而不取决于x
。这意味着应用
变量x
和固定pos
的排列应该更有效
而不是同时对变量x
和pos
应用置换。
这由以下代码说明:
/* apply the same permutation several times */
int perm_array(__m256i* restrict x_in, uint8_t* restrict pos, __m256i* restrict x_out){
for (int i = 0; i<1024; i++){
x_out[i]=get_256_bits(x_in[i], pos);
}
return 0;
}
使用clang和gcc可以编译为
nice code:第237行的循环.L5
仅包含16
vpshufb
而不是24。此外,vpaddb
悬挂在循环之外。
请注意,循环中也只有一个vpermq
。
我不知道MSVC是否会在循环外悬挂这么多指令。
如果没有,可能
通过手动修改代码来提高循环的性能。
这样做应使
仅依赖pos
而不依赖x
的操作会在循环外部进行。
关于Intel Skylake的性能:
此循环的吞吐量可能受到
每个循环迭代大约需要32个端口5微操作。这意味着吞吐量
在perm_array
这样的循环环境中,每32个CPU周期大约有256个置换位,
或每个CPU周期约8个置换位。
使用AVX2指令的128位排列
此代码与256位置换情况非常相似。
尽管仅排列了128位,但AVX2的完整256位宽度
寄存器用于获得最佳性能。
此处不模拟字节混洗。
这是因为存在
高效的单指令执行字节改组
在128位通道中:vpshufb
。
函数perm_array_128
测试位置换的性能
固定排列和变量输入x
。
汇编循环包含大约11个端口5(p5)微操作,如果我们
假设使用Intel Skylake CPU。
这11个p5微操作至少需要11个CPU周期(吞吐量)。
因此,在最佳情况下,每个周期的吞吐量约为12个置换位,这是256位置换情况下的1.5倍。
/* gcc -O3 -m64 -Wall -mavx2 -march=skylake bitperm128_avx2.c */
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>
int print128_epi64(__m128i a);
uint32_t get_32_128_bits(__m256i x, __m256i pos){ /* extract 32 permuted bits out from 2x128 bits */
__m256i pshufb_mask = _mm256_set_epi8(0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1, 0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1);
__m256i byte_pos = _mm256_srli_epi32(pos, 3); /* which byte do we need within the 16 byte lanes. bits 6,5,4,3 select the right byte */
byte_pos = _mm256_and_si256(byte_pos, _mm256_set1_epi8(0xF)); /* mask off the unwanted bits (unnecessary if _mm256_srli_epi8 would have existed */
__m256i bit_pos = _mm256_and_si256(pos, _mm256_set1_epi8(0x07)); /* which bit within the byte */
__m256i bit_pos_mask = _mm256_shuffle_epi8(pshufb_mask, bit_pos); /* get bit mask */
__m256i bytes_wanted = _mm256_shuffle_epi8(x, byte_pos); /* get the right bytes */
__m256i bits_wanted = _mm256_and_si256(bit_pos_mask, bytes_wanted); /* apply the bit mask to get rid of the unwanted bits within the byte */
__m256i bits_x8 = _mm256_cmpeq_epi8(bits_wanted, bit_pos_mask); /* set all bits if the wanted bit is set */
return _mm256_movemask_epi8(bits_x8); /* move most significant bit of each byte to 32 bit register */
}
__m128i permute_128_bits(__m128i x, uint8_t* pos){ /* get bit permutations in 32 bit pieces and glue them together */
__m256i x2 = _mm256_broadcastsi128_si256(x); /* broadcast x to the hi and lo lane */
uint64_t t0 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[0]));
uint64_t t1 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[32]));
uint64_t t2 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[64]));
uint64_t t3 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[96]));
uint64_t t10 = (t1<<32)|t0;
uint64_t t32 = (t3<<32)|t2;
return(_mm_set_epi64x(t32, t10));
}
/* Test loop performance with the following loop (see assembly) -> 11 port5 uops inside the critical loop */
/* Use gcc -O3 -m64 -Wall -mavx2 -march=skylake -S bitperm128_avx2.c to generate the assembly */
int perm_array_128(__m128i* restrict x_in, uint8_t* restrict pos, __m128i* restrict x_out){
for (int i = 0; i<1024; i++){
x_out[i]=permute_128_bits(x_in[i], pos);
}
return 0;
}
int main(){
__m128i input = _mm_set_epi16(0x0123,0x4567,0xFEDC,0xBA98, 0x7654,0x3210,0x89AB,0xCDEF);
/* Example */
/* 112 96 80 64 48 32 16 0 */
/* input 0123 4567 FEDC BA98 7654 3210 89AB CDEF */
/* output 8FFF CDEF DCBA 08EF CDFF DCBA EFF0 89AB */
uint8_t permutation[128] = {16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
32,32,32,32, 36,36,36,36, 0,1,2,3, 4,5,6,7,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
0,0,0,0, 0,0,0,0, 8,9,10,11, 12,13,14,15,
0,1,2,3, 4,5,6,7, 28,29,30,31, 32,33,34,35,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15,
1,1,1,1, 1,1,1,1, 1,1,1,1, 32,32,32,1};
printf("input = \n");
print128_epi64(input);
__m128i x = permute_128_bits(input, permutation);
printf("permuted input = \n");
print128_epi64(x);
return 0;
}
int print128_epi64(__m128i a){
uint64_t v[2];
int i;
_mm_storeu_si128((__m128i*)v,a);
for (i = 1; i>=0; i--) printf("%016lX ",v[i]);
printf("\n");
return 0;
}
一些任意排列的示例输出:
$ ./a.out
input =
01234567FEDCBA98 7654321089ABCDEF
permuted input =
8FFFCDEFDCBA08EF CDFFDCBAEFF089AB