如果我在Keras中拥有MaxPooling2D
的{{1}}层。
应用于pool_size=(2,2), strides=(2,2)
输入要素图,将导致3x3
空间输出大小。 Caffe(1x1
)中的相同操作将导致输出大小为pool: MAX; kernel_size: 2; stride: 2
。
众所周知,Caffe和Tensorflow / Keras behave differently when applying max pooling。
有一种2D卷积的解决方法:要避免使用asymmetric padding of Conv2D in TensorFlow,可以在其前面加上explicit zero padding,并将填充类型从2x2
更改为same
是否有类似的解决方法来更改Keras中的valid
行为,使其性能类似于Caffe?更准确地说,我正在寻找MaxPooling2D
周围的包装,该包装应等于Caffe中的最大合并2D 2x2。
也许在MaxPooling2D
输入的左边和顶部填充一个像素?
我正在使用TensorFlow中的MaxPooling2D
。
答案 0 :(得分:1)
好,我找到了答案,让我保存在这里。必须用零填充输入的底部/右侧。这是最小的工作示例:
import os
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input, MaxPool2D
from tensorflow.python.keras import backend as K
import caffe
from caffe.model_libs import P
from caffe import layers as L
from caffe.proto import caffe_pb2
def MaxPooling2DWrapper(pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs):
def padded_pooling(inputs):
_, h, w, _ = K.int_shape(inputs)
interm_input = inputs
if h % 2 != 0 or w % 2 != 0:
interm_input = tf.keras.layers.Lambda(lambda x: tf.pad(inputs, [[0, 0], [0, 1], [0, 1], [0, 0]]),
name='input_pad')(inputs)
return MaxPool2D(pool_size, strides, padding, data_format, **kwargs)(interm_input)
return padded_pooling
def build_caffe_model(h, w):
caffe_spec = caffe.NetSpec()
pool_config = {
'pool': P.Pooling.MAX,
'kernel_size': 2,
'stride': 2
}
caffe_spec['input'] = L.Input(shape=caffe_pb2.BlobShape(dim=(1, 1, h, w)))
caffe_spec['max_pool'] = L.Pooling(caffe_spec['input'], **pool_config)
proto = str(caffe_spec.to_proto())
with open('deploy.prototxt', 'w') as f:
f.write(proto)
net = caffe.Net('deploy.prototxt', caffe.TEST)
return net
def build_keras_model(h, w):
inputs = Input(shape=(h, w, 1))
maxpool = MaxPooling2DWrapper()(inputs)
return Model(inputs, maxpool)
def main():
caffe.set_mode_cpu()
os.environ['GLOG_minloglevel'] = '2'
h = 3
w = 3
size_input = h * w
caffe_net = build_caffe_model(h, w)
keras_model = build_keras_model(h, w)
keras_model.summary()
keras_out = keras_model.predict(np.arange(size_input).reshape(1, h, w, 1))
caffe_net.blobs['input'].data[...] = np.arange(size_input).reshape(1, 1, h, w)
caffe_out = caffe_net.forward()['max_pool']
print('Input:')
print(np.arange(size_input).reshape(h, w))
print('Caffe result:')
print(np.squeeze(caffe_out))
print('Keras result:')
print(np.squeeze(keras_out))
if __name__ == '__main__':
main()
包装器仅在需要时才添加填充。这段代码的输出:
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 3, 3, 1) 0
_________________________________________________________________
input_pad (Lambda) (None, 4, 4, 1) 0
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 2, 2, 1) 0
=================================================================
Input:
[[0 1 2]
[3 4 5]
[6 7 8]]
Caffe result:
[[4. 5.]
[7. 8.]]
Keras result:
[[4. 5.]
[7. 8.]]