我正在根据单元格中数值的颜色填充矩阵的单元格。
一些示例数据:
plotData <- structure(list(Dimension = structure(c(1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L), .Label = c("Dim 1", "Dim 2", "Dim 3",
"Dim 4", "Dim 5", "Dim 6", "Dim 7"), class = "factor"), R1 = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 1L, 1L, 4L, 4L, 4L, 4L, 2L,
2L, 4L, 4L, 1L, 1L, 5L, 5L, 2L, 2L, 5L, 5L, 1L, 1L, 2L, 2L, 6L,
6L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 4L, 4L, 5L, 5L, 6L, 6L, 3L,
3L, 7L, 7L, 3L, 3L, 5L, 5L, 6L, 6L, 4L, 4L, 7L, 7L, 4L, 4L, 6L,
6L, 5L, 5L, 7L, 7L, 5L, 5L, 6L, 6L, 7L, 7L, 6L, 6L, 7L, 7L, 2L,
2L, 7L, 7L, 3L, 3L, 2L, 2L, 1L, 1L, 4L, 4L, 5L, 5L, 6L, 6L, 3L,
3L, 2L, 2L, 1L, 1L, 4L, 4L, 5L, 5L, 6L, 6L, 3L, 3L, 2L, 2L, 1L,
1L, 4L, 4L, 5L, 5L, 6L, 6L, 3L, 3L, 2L, 2L, 1L, 1L, 4L, 4L, 5L,
5L, 6L, 6L, 3L, 3L, 2L, 2L, 1L, 1L, 4L, 4L, 5L, 5L, 6L, 6L, 3L,
3L, 2L, 2L, 1L, 1L, 4L, 4L, 5L, 5L, 6L, 6L), .Label = c("Rater 1",
"Rater 2", "Rater 3", "Rater 4", "Rater 5", "Rater 6", "Rater 7"
), class = "factor"), R2 = structure(c(4L, 4L, 5L, 5L, 6L, 6L,
3L, 3L, 7L, 7L, 3L, 3L, 5L, 5L, 6L, 6L, 4L, 4L, 7L, 7L, 4L, 4L,
6L, 6L, 5L, 5L, 7L, 7L, 5L, 5L, 6L, 6L, 7L, 7L, 6L, 6L, 7L, 7L,
2L, 2L, 7L, 7L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 1L, 1L,
4L, 4L, 4L, 4L, 2L, 2L, 4L, 4L, 1L, 1L, 5L, 5L, 2L, 2L, 5L, 5L,
1L, 1L, 2L, 2L, 6L, 6L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L), .Label = c("Rater 1", "Rater 2", "Rater 3",
"Rater 4", "Rater 5", "Rater 6", "Rater 7"), class = "factor"),
kappa = c(0.607540983606557, 0.437185929648241, 0.731739272846381,
0.534769230769231, 0.498230088495575, 0.503184713375796,
0.189421015010722, 0.24248496993988, 0.196913787319691, 0.188524590163934,
0.71434460016488, 0.583883751651255, 0.676277476448758, 0.597444089456869,
0.630104083266613, 0.390125847047435, 0.265364008824456,
0.269453768690876, 0.12396449704142, 0.378727400798309, 0.567901234567901,
0.591351351351351, 0.630104083266613, 0.471698113207547,
0.185430463576159, 0.094765651727677, 0.348789131718842,
0.167259786476868, 0.784320438206094, 0.616555082166768,
0.130634774609016, 0.207547169811321, 0.160714285714286,
0.135011441647597, 0.533908754623921, 0.505882352941176,
0.198526950117174, 0.199491740787802, 0.121372031662269,
0.446559297218155, 0.313291139240506, 0.488774682174736,
0.607540983606557, 0.437185929648241, 0.731739272846381,
0.534769230769231, 0.498230088495575, 0.503184713375796,
0.189421015010722, 0.24248496993988, 0.196913787319691, 0.188524590163934,
0.71434460016488, 0.583883751651255, 0.676277476448758, 0.597444089456869,
0.630104083266613, 0.390125847047435, 0.265364008824456,
0.269453768690876, 0.12396449704142, 0.378727400798309, 0.567901234567901,
0.591351351351351, 0.630104083266613, 0.471698113207547,
0.185430463576159, 0.094765651727677, 0.348789131718842,
0.167259786476868, 0.784320438206094, 0.616555082166768,
0.130634774609016, 0.207547169811321, 0.160714285714286,
0.135011441647597, 0.533908754623921, 0.505882352941176,
0.198526950117174, 0.199491740787802, 0.121372031662269,
0.446559297218155, 0.313291139240506, 0.488774682174736,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), row.names = c(1L,
2L, 6L, 7L, 11L, 12L, 16L, 17L, 21L, 22L, 26L, 27L, 31L, 32L,
36L, 37L, 41L, 42L, 46L, 47L, 51L, 52L, 56L, 57L, 61L, 62L, 66L,
67L, 71L, 72L, 76L, 77L, 81L, 82L, 86L, 87L, 91L, 92L, 96L, 97L,
101L, 102L, 106L, 107L, 111L, 112L, 116L, 117L, 121L, 122L, 126L,
127L, 131L, 132L, 136L, 137L, 141L, 142L, 146L, 147L, 151L, 152L,
156L, 157L, 161L, 162L, 166L, 167L, 171L, 172L, 176L, 177L, 181L,
182L, 186L, 187L, 191L, 192L, 196L, 197L, 201L, 202L, 206L, 207L,
211L, 212L, 216L, 217L, 221L, 222L, 226L, 227L, 231L, 232L, 236L,
237L, 241L, 242L, 246L, 247L, 251L, 252L, 256L, 257L, 261L, 262L,
266L, 267L, 271L, 272L, 276L, 277L, 281L, 282L, 286L, 287L, 291L,
292L, 296L, 297L, 301L, 302L, 306L, 307L, 311L, 312L, 316L, 317L,
321L, 322L, 326L, 327L, 331L, 332L, 336L, 337L, 341L, 342L, 346L,
347L, 351L, 352L, 356L, 357L, 361L, 362L, 366L, 367L, 371L, 372L,
376L, 377L, 381L, 382L, 386L, 387L), class = "data.frame")
现在,此代码(我认为)应该根据单元格中的kappa值为单元格填充颜色:
library(ggplot2)
library(ggpubr)
p <- ggplot(plotData,aes(x=R1,y=R2)) +
geom_tile(aes(fill = kappa)) +
geom_text(aes(label = round(kappa, 2))) +
labs(x="",y="",fill="Kappa") +
labs_pubr(base_size = 15) +
facet_grid(Dimension ~ .)
plot(p)
但是,我得到的是:
所以不是所有的单元格都是彩色的。我看不到为什么这实际上不起作用,但是我可能做的有些愚蠢。
答案 0 :(得分:2)
发生这种情况是由于数据格式错误-每个组合(void *was;
Wow64DisableWow64FsRedirection (&was);
CreateProcess (...);
Wow64RevertWow64FsRedirection (was);
和R1
给出了两次,而其中一个条目具有R2
)。
在这里,我们发现NA
组合给出了两次,其中一个具有R1 == "Rater 1" & R2 == "Rater 2"
。
NA
subset(plotData, R1 == "Rater 1" & R2 == "Rater 2")
Dimension R1 R2 kappa
1: Dim 1 Rater 1 Rater 2 0.1213720
2: Dim 2 Rater 1 Rater 2 0.4465593
3: Dim 1 Rater 1 Rater 2 NA
4: Dim 2 Rater 1 Rater 2 NA
使用geom_text
数值,但是kappa
使用fill
,这就是为什么背景变灰的原因。
要解决此问题,请在绘图时在数据上使用NA
(您仍然无法使用na.omit()
值):
NA