我是ggplot的新手,正在尝试创建此图:
但是实际上,我只是停留在这里:
这是我的代码:
ggplot(diamonds) +
aes(x = carat, group = cut) +
geom_line(stat = "density", size = 1) +
theme_grey() +
facet_wrap(~cut, nrow = 5, strip.position = "right") +
geom_boxplot(aes())
有人知道我下一步可以做什么吗?
答案 0 :(得分:2)
使用ggstance包中的水平箱线图geom_boxploth()
/ stat_boxploth()
可以轻松完成此操作:
library(ggstance)
ggplot(diamonds, aes(x = carat, y = -0.5)) +
# horizontal box plot
geom_boxploth(aes(fill = cut)) +
# normal density plot
geom_density(aes(x = carat), inherit.aes = FALSE) +
# vertical lines at Q1 / Q2 / Q3
stat_boxploth(geom = "vline", aes(xintercept = ..xlower..)) +
stat_boxploth(geom = "vline", aes(xintercept = ..xmiddle..)) +
stat_boxploth(geom = "vline", aes(xintercept = ..xupper..)) +
facet_grid(cut ~ .) +
# reproduce original chart's color scale (o/w ordered factors will result
# in viridis scale by default, using the current version of ggplot2)
scale_fill_discrete()
如果由于某种原因而仅限于ggplot2软件包,则仍然可以这样做,但是由于geom_boxplot()
和geom_density()
朝着不同的方向发展,因此它会变得不那么直接。
替代1 :计算箱形图的坐标,并在将结果传递到ggplot()
之前手动翻转它们。以常规方式添加密度层:
library(dplyr)
library(tidyr)
p.box <- ggplot(diamonds, aes(x = cut, y = carat)) + geom_boxplot()
p.box.data <- layer_data(p.box) %>%
select(x, ymin, lower, middle, upper, ymax, outliers) %>%
mutate(cut = factor(x, labels = levels(diamonds$cut), ordered = TRUE)) %>%
select(-x)
ggplot(p.box.data) +
# manually plot flipped boxplot
geom_segment(aes(x = ymin, xend = ymax, y = -0.5, yend = -0.5)) +
geom_rect(aes(xmin = lower, xmax = upper, ymin = -0.75, ymax = -0.25, fill = cut),
color = "black") +
geom_point(data = . %>% unnest(outliers),
aes(x = outliers, y = -0.5)) +
# vertical lines at Q1 / Q2 / Q3
geom_vline(data = . %>% select(cut, lower, middle, upper) %>% gather(key, value, -cut),
aes(xintercept = value)) +
# density plot
geom_density(data = diamonds, aes(x = carat)) +
facet_grid(cut ~ .) +
labs(x = "carat") +
scale_fill_discrete()
替代2 :计算密度图的坐标,并在将结果传递到ggplot()
之前手动翻转它们。以常规方式添加箱形图图层。翻转整个图表:
p.density <- ggplot(diamonds, aes(x = carat, group = cut)) + geom_density()
p.density.data <- layer_data(p.density) %>%
select(x, y, group) %>%
mutate(cut = factor(group, labels = levels(diamonds$cut), ordered = TRUE)) %>%
select(-group)
p.density.data <- p.density.data %>%
rbind(p.density.data %>%
group_by(cut) %>%
filter(x == min(x)) %>%
mutate(y = 0) %>%
ungroup())
ggplot(diamonds, aes(x = -0.5, y = carat)) +
# manually flipped density plot
geom_polygon(data = p.density.data, aes(x = y, y = x),
fill = NA, color = "black") +
# box plot
geom_boxplot(aes(fill = cut, group = cut)) +
# vertical lines at Q1 / Q2 / Q3
stat_boxplot(geom = "hline", aes(yintercept = ..lower..)) +
stat_boxplot(geom = "hline", aes(yintercept = ..middle..)) +
stat_boxplot(geom = "hline", aes(yintercept = ..upper..)) +
facet_grid(cut ~ .) +
scale_fill_discrete() +
coord_flip()
答案 1 :(得分:0)
也许这会有所帮助。虽然不需要升级:)
t.insert("end", "welcome to python programming")