拆分数据以按条件进行训练和测试

时间:2019-01-27 14:12:46

标签: pandas machine-learning scikit-learn

假设我有一个包含贷款信息的pandas DataFrame,并且我想预测用户将不会退还钱的可能性(由我的数据框中的default列指示)。我想使用sklearn.model_selection.train_test_split将数据分为训练集和测试集。

但是,我要确保具有相同客户ID的贷款不会同时出现在测试和训练中。我应该怎么做?

下面是我的数据示例:

d = {'loan_date': ['20170101','20170701','20170301','20170415','20170515'],
     'customerID': [111,111,222,333,444],
     'loanID': ['aaa','fff','ccc','ddd','bbb'],
     'loan_duration' : [6,3,12,5,12],
     'gender':['F','F','M','F','M'],
     'loan_amount': [20000,10000,30000,10000,40000],
     'default':[0,1,0,0,1]}

df = pd.DataFrame(data=d)
例如,

CustomerID==111贷款记录应该出现在测试或火车中,但不能同时出现在两者中。

1 个答案:

答案 0 :(得分:0)

我提出以下解决方案。对于具有相同customerID的客户,不会出现在培训和测试中;按活动划分的aslo客户-即将大约相同比例的具有相同数量贷款的用户接受培训和测试。

出于演示目的,我扩展了数据样本:

d = {'loan_date': ['20170101','20170701','20170301','20170415','20170515','20170905', '20170814', '20170819', '20170304'],         
     'customerID': [111,111,222,333,444,222,111,444,555],        
     'loanID': ['aaa','fff','ccc','ddd','bbb','eee', 'kkk', 'zzz', 'yyy'],                                                         
     'loan_duration' : [6,3,12,5,12, 3, 17, 4, 6],
     'gender':['F','F','M','F','M','M', 'F', 'M','F'],
     'loan_amount': [20000,10000,30000,10000,40000,20000,30000,30000,40000],
     'default':[0,1,0,0,1,0,1,1,0]}

df = pd.DataFrame(data=d) 

代码:

from sklearn.model_selection import train_test_split

def group_customers_by_activity(df):
    value_count = df.customerID.value_counts().reset_index()
    df_by_customer = df.set_index('customerID')
    df_s = [df_by_customer.loc[value_count[value_count.customerID == count]['index']] for count in value_count.customerID.unique()]
    return df_s

-此功能按customerID活动(具有相同customerID的条目数)划分df。
此函数的示例输出:

group_customers_by_activity(df)
Out:
[           loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 111         20170101    aaa              6      F        20000        0
 111         20170701    fff              3      F        10000        1
 111         20170814    kkk             17      F        30000        1,
            loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 222         20170301    ccc             12      M        30000        0
 222         20170905    eee              3      M        20000        0
 444         20170515    bbb             12      M        40000        1
 444         20170819    zzz              4      M        30000        1,
            loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 333         20170415    ddd              5      F        10000        0
 555         20170304    yyy              6      F        40000        0]

-具有1,2,3贷款等的用户组。

此功能以用户到达火车或测试以下方式的方式来拆分组:

def split_group(df_group, train_size=0.8):
    customers = df_group.index.unique()
    train_customers, test_customers = train_test_split(customers, train_size=train_size)
    train_df, test_df = df_group.loc[train_customers], df_group.loc[test_customers]
    return train_df, test_df

split_group(df_s[2])
Out:
(           loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 444         20170515    bbb             12      M        40000        1
 444         20170819    zzz              4      M        30000        1,
            loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 222         20170301    ccc             12      M        30000        0
 222         20170905    eee              3      M        20000        0)

其余的将其应用于“客户活动”的所有组:

def get_sized_splits(df_s, train_size):
    train_splits, test_splits = zip(*[split_group(df_group, train_size) for df_group in df_s])
    return train_splits, test_splits

df_s = group_customers_by_activity(df)
train_splits, test_splits = get_sized_splits(df_s, 0.8)
train_splits, test_splits
Out:
((Empty DataFrame
  Columns: [loan_date, loanID, loan_duration, gender, loan_amount, default]
  Index: [],
             loan_date loanID  loan_duration gender  loan_amount  default
  customerID                                                             
  444         20170515    bbb             12      M        40000        1
  444         20170819    zzz              4      M        30000        1,
             loan_date loanID  loan_duration gender  loan_amount  default
  customerID                                                             
  333         20170415    ddd              5      F        10000        0),
 (           loan_date loanID  loan_duration gender  loan_amount  default
  customerID                                                             
  111         20170101    aaa              6      F        20000        0
  111         20170701    fff              3      F        10000        1
  111         20170814    kkk             17      F        30000        1,
             loan_date loanID  loan_duration gender  loan_amount  default
  customerID                                                             
  222         20170301    ccc             12      M        30000        0
  222         20170905    eee              3      M        20000        0,
             loan_date loanID  loan_duration gender  loan_amount  default
  customerID                                                             
  555         20170304    yyy              6      F        40000        0))

不要担心emty DataFrame,它将很快被串联。 split函数具有以下定义:

def split(df, train_size):
    df_s = group_customers_by_activity(df)
    train_splits, test_splits = get_sized_splits(df_s, train_size=train_size)
    return pd.concat(train_splits), pd.concat(test_splits)

split(df, 0.8)
Out[106]: 
(           loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 444         20170515    bbb             12      M        40000        1
 444         20170819    zzz              4      M        30000        1
 555         20170304    yyy              6      F        40000        0,
            loan_date loanID  loan_duration gender  loan_amount  default
 customerID                                                             
 111         20170101    aaa              6      F        20000        0
 111         20170701    fff              3      F        10000        1
 111         20170814    kkk             17      F        30000        1
 222         20170301    ccc             12      M        30000        0
 222         20170905    eee              3      M        20000        0
 333         20170415    ddd              5      F        10000        0)

-因此,customerID放置在火车或测试数据中。我猜是因为输入数据的大小小,所以出现了这样的裂隙(火车>测试)。
如果您不需要按“ customerID活动”进行分组,则可以忽略它,而只需使用split_group即可达到目标。