我有一个如下所示的pandas数据框:
df = pd.DataFrame({'name': [0, 1, 2, 3], 'cards': [['A', 'B', 'C', 'D'],
['B', 'C', 'D', 'E'],
['E', 'F', 'G', 'H'],
['A', 'A', 'E', 'F']]})
name cards
0 ['A', 'B', 'C', 'D']
1 ['B', 'C', 'D', 'E']
2 ['E', 'F', 'G', 'H']
3 ['A', 'A', 'E', 'F']
我想创建一个看起来像这样的矩阵:
name 0 1 2 3
name
0 4 3 0 1
1 3 4 1 1
2 0 1 4 2
3 1 1 2 4
其中的值是共有项目的数量。
有什么想法吗?
答案 0 :(得分:1)
通过列表理解并遍历所有对,我们可以得出结果:
import pandas as pd
df = pd.DataFrame({'name': [0, 1, 2, 3], 'cards': [['A', 'B', 'C', 'D'],
['B', 'C', 'D', 'E'],
['E', 'F', 'G', 'H'],
['A', 'A', 'E', 'F']]})
result=[[len(list(set(x) & set(y))) for x in df['cards']] for y in df['cards']]
print(result)
输出:
[[4, 3, 0, 1], [3, 4, 1, 1], [0, 1, 4, 2], [1, 1, 2, 3]]
'&'用于计算两个集合的交集
这正是您想要的:
import pandas as pd
df = pd.DataFrame({'name': [0, 1, 2, 3], 'cards': [['A', 'B', 'C', 'D'],
['B', 'C', 'D', 'E'],
['E', 'F', 'G', 'H'],
['A', 'A', 'E', 'F']]})
result=[[len(x)-max(len(set(y) - set(x)),len(set(x) - set(y))) for x in df['cards']] for y in df['cards']]
print(result)
输出:
[[4, 3, 0, 1], [3, 4, 1, 1], [0, 1, 4, 2], [1, 1, 2, 4]]
答案 1 :(得分:1)
使用.apply
方法和lambda
,我们可以直接获取数据框
def func(df, j):
return pd.Series([len(set(i)&set(j)) for i in df.cards])
newdf = df.cards.apply(lambda x: func(df, x))
newdf
0 1 2 3
0 4 3 0 1
1 3 4 1 1
2 0 1 4 2
3 1 1 2 3
答案 2 :(得分:0)
import pandas as pd
import numpy as np
df = pd.DataFrame([['A', 'B', 'C', 'D'],
['B', 'C', 'D', 'E'],
['E', 'F', 'G', 'H'],
['A', 'A', 'E', 'F']])
nrows = df.shape[0]
# Initialization
matrix = np.zeros((nrows,nrows),dtype= np.int64)
for i in range(0,nrows):
for j in range(0,nrows):
matrix[i,j] = sum(df.iloc[:,i] == df.iloc[:,j])
print(matrix)
[[4 1 0 0]
[1 4 0 0]
[0 0 4 0]
[0 0 0 4]]