最近,我一直在尝试完成一个实验,利用Keras创建一个神经网络音乐分析程序,并修改神经网络的层数以发现对演奏的影响。我的程序来源是以下网站:
我最近在程序方面遇到了一些错误,并且在Stack Overflow上另一位开发人员的建议下,我决定寻求Scikit库部分的帮助。
代码显示在这里:
import librosa
import librosa.feature
import librosa.display
import glob
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.np_utils import to_categorical
from sklearn.model_selection import train_test_split,
StratifiedShuffleSplit, StratifiedKFold
def display_mfcc(song):
y, _ = librosa.load(song)
mfcc = librosa.feature.mfcc(y)
plt.figure(figsize=(10, 4))
librosa.display.specshow(mfcc, x_axis='time', y_axis='mel')
plt.colorbar()
plt.title(song)
plt.tight_layout()
plt.show()
def extract_features_song(f):
y, _ = librosa.load(f)
mfcc = librosa.feature.mfcc(y)
mfcc /= np.amax(np.absolute(mfcc))
return np.ndarray.flatten(mfcc)[:25000]
def generate_features_and_labels():
all_features = []
all_labels = []
genres = ['blues', 'classical', 'country', 'disco', 'hiphop',
'jazz', 'metal', 'pop', 'reggae', 'rock']
for genre in genres:
sound_files = glob.glob('genres/'+genre+'/*.au')
print('Processing %d songs in %s genre...' %
(len(sound_files), genre))
for f in sound_files:
features = extract_features_song(f)
all_features.append(features)
all_labels.append(genre)
label_uniq_ids, label_row_ids = np.unique(all_labels,
return_inverse=True)
label_row_ids = label_row_ids.astype(np.int32, copy=False)
onehot_labels = to_categorical(label_row_ids,
len(label_uniq_ids))
return np.stack(all_features), onehot_labels
features, labels = generate_features_and_labels()
print(np.shape(features))
print(np.shape(labels))
training_split = 0.8
alldata = np.column_stack((features, labels))
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.20,
random_state=37)
for train_index, test_index in sss.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
print(np.shape(train))
print(np.shape(test))
train_input = test[:,:-10]
train_labels = train[:,-10:]
test_input = test[:,:-10]
test_labels = test[:,-10:]
print(np.shape(train_input))
print(np.shape(train_labels))
model = Sequential([
Dense(100, input_dim=np.shape(train_input)[1]),
Activation('relu'),
Dense(10),
Activation('softmax'),
])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
print(model.summary())
model.fit(train_input, train_labels, epochs=10, batch_size=32,
validation_split=0.2)
loss, acc = model.evaluate(test_input, test_labels, batch_size=32)
print('Done!')
print('Loss: %.4f, accuracy: %.4f' % (loss, acc))
Python开始提供预期的响应,产生:
Processing 100 songs in blues genre...
Processing 100 songs in classical genre...
Processing 100 songs in country genre...
Processing 100 songs in disco genre...
Processing 100 songs in hiphop genre...
Processing 100 songs in jazz genre...
Processing 100 songs in metal genre...
Processing 100 songs in pop genre...
Processing 100 songs in reggae genre...
Processing 100 songs in rock genre...
(1000, 25000)
(1000, 10)
但是中断了该过程并显示了此错误消息:
Traceback (most recent call last):
File "/Users/surengrigorian/Documents/Stage1.py", line 60, in <module>
for train_index, test_index in sss.split(X, y):
NameError: name 'X' is not defined
感谢您提供有关此问题的任何帮助。
答案 0 :(得分:0)
在您的代码中未定义X和y,我相信在您的情况下X等于要素,Y等于标签
a=list()
for i in range(9552):
print(ops_list[i].split(";"))
希望对您有帮助