fn edit_map_values(
map1: &mut HashMap<String, i128> || &mut BTreeMap<String, i128>){
for tuple in map1.iter_mut() {
if !map1.contains_key(&"key1") {
*tuple.1 += 1;
}
}
map1.insert(&"key2", 10);
}
如何编写一个可以接受HashMap和BtreeMap的函数,如上例所示?
答案 0 :(得分:3)
可以使用特征来抽象类型,对于您的特定用例,您可以看一下这个更受限制的示例。
use core::{borrow::Borrow, hash::Hash};
use std::collections::{BTreeMap, HashMap};
trait GenericMap<K, V> {
fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq + Ord;
fn each_mut<F>(&mut self, cb: F)
where
F: FnMut((&K, &mut V));
fn insert(&mut self, key: K, value: V) -> Option<V>;
}
impl<K, V> GenericMap<K, V> for HashMap<K, V>
where
K: Eq + Hash,
{
fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq + Ord,
{
self.contains_key(k)
}
fn each_mut<F>(&mut self, mut cb: F)
where
F: FnMut((&K, &mut V)),
{
self.iter_mut().for_each(|x| cb(x))
}
fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert(key, value)
}
}
impl<K, V> GenericMap<K, V> for BTreeMap<K, V>
where
K: Ord,
{
fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq + Ord,
{
self.contains_key(k)
}
fn each_mut<F>(&mut self, mut cb: F)
where
F: FnMut((&K, &mut V)),
{
self.iter_mut().for_each(|x| cb(x))
}
fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert(key, value)
}
}
fn edit_map_values<T: GenericMap<String, i128>>(map: &mut T) {
map.each_mut(|(k, v)| {
if k != "key1" {
*v += 1;
}
});
map.insert("key2".into(), 10);
}
fn main() {
let mut hm: HashMap<String, i128> = [("One".into(), 1), ("Two".into(), 2)]
.iter()
.cloned()
.collect();
let mut btm: BTreeMap<String, i128> = [("Five".into(), 5), ("Six".into(), 6)]
.iter()
.cloned()
.collect();
dbg!(&hm);
dbg!(&btm);
edit_map_values(&mut hm);
edit_map_values(&mut btm);
dbg!(&hm);
dbg!(&btm);
}
答案 1 :(得分:1)
在1.0版本之前,曾经有Map
和MutableMap
特征,但是在稳定之前已将其删除。由于缺少更高种类的类型,Rust类型系统目前无法很好地表达这些特征。
eclectic crate提供了实验性的收集特征,但是它们尚未更新一年,因此我不确定它们是否仍适用于Rust的最新版本。
更多信息:
答案 2 :(得分:0)
虽然没有共同的 Map
特征,但您可以使用其他特征的组合对迭代器进行操作以实现类似的功能。尽管由于克隆,这可能不是非常节省内存,并且根据您尝试执行的操作类型也有点复杂。您尝试执行的操作可能是这样实现的:
fn edit_map_values<I>(map: &mut I)
where
I: Clone + IntoIterator<Item = (String, i128)> + std::iter::FromIterator<(String, i128)>,
{
// Since into_iter consumes self, we have to clone here.
let (keys, _values): (Vec<String>, Vec<_>) = map.clone().into_iter().unzip();
*map = map
.clone()
.into_iter()
// iterating while mutating entries can be done with map
.map(|mut tuple| {
if !keys.contains(&"key1".to_string()) {
tuple.1 += 1;
}
tuple
})
// inserting an element can be done with chain and once
.chain(std::iter::once(("key2".into(), 10)))
.collect();
// removing an element could be done with filter
// removing and altering elements could be done with filter_map
// etc.
}
fn main() {
use std::collections::{BTreeMap, HashMap};
{
let mut m = HashMap::new();
m.insert("a".to_string(), 0);
m.insert("key3".to_string(), 1);
edit_map_values(&mut m);
println!("{:#?}", m);
}
{
let mut m = BTreeMap::new();
m.insert("a".to_string(), 0);
m.insert("key3".to_string(), 1);
edit_map_values(&mut m);
println!("{:#?}", m);
}
}
两次输出是一样的,当然除了HashMap的顺序:
{
"a": 1,
"key2": 10,
"key3": 2,
}