我一直在与gganimate认真对待,试图创造一个有关印度各州素质指标的等级变动的故事。虽然我可以将动画制作到整个故事的某个水平,但仍然与整个图片相去甚远。
每个国家每个月的动画排名变动背后的数据如下
> dput(onlyrank)
structure(list(`Short name` = c("AP", "AP", "AP", "AP", "AP",
"AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP",
"AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP", "AP",
"AP", "AP", "AP", "AP", "AS", "AS", "AS", "AS", "AS", "AS", "AS",
"AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS",
"AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS", "AS",
"AS", "AS", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR",
"BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR",
"BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR", "BR",
"CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG",
"CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG",
"CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "CG", "DL", "DL",
"DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL",
"DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL", "DL",
"DL", "DL", "DL", "DL", "DL", "DL", "DL", "GA", "GA", "GA", "GA",
"GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA",
"GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA", "GA",
"GA", "GA", "GA", "GA", "GA", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ",
"GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ",
"GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ", "GJ",
"GJ", "GJ", "GJ", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP",
"HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP",
"HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP", "HP",
"HP", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR",
"HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR",
"HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "HR", "JH",
"JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH",
"JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH",
"JH", "JH", "JH", "JH", "JH", "JH", "JH", "JH", "JM", "JM", "JM",
"JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM",
"JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM", "JM",
"JM", "JM", "JM", "JM", "JM", "JM", "KA", "KA", "KA", "KA", "KA",
"KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA",
"KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA", "KA",
"KA", "KA", "KA", "KA", "KL", "KL", "KL", "KL", "KL", "KL", "KL",
"KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL",
"KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL", "KL",
"KL", "KL", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO",
"KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO",
"KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO", "KO",
"KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS",
"KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS",
"KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "KS", "MH", "MH",
"MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH",
"MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH", "MH",
"MH", "MH", "MH", "MH", "MH", "MH", "MH", "MP", "MP", "MP", "MP",
"MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP",
"MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP", "MP",
"MP", "MP", "MP", "MP", "MP", "MU", "MU", "MU", "MU", "MU", "MU",
"MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU",
"MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU", "MU",
"MU", "MU", "MU", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE",
"NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE",
"NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE", "NE",
"NE", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR",
"OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR",
"OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "OR", "PJ",
"PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ",
"PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ",
"PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "PJ", "RJ", "RJ", "RJ",
"RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ",
"RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "RJ",
"RJ", "RJ", "RJ", "RJ", "RJ", "RJ", "TE", "TE", "TE", "TE", "TE",
"TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE",
"TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE", "TE",
"TE", "TE", "TE", "TE", "TN", "TN", "TN", "TN", "TN", "TN", "TN",
"TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN",
"TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN", "TN",
"TN", "TN", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA",
"UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA",
"UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA", "UA",
"UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E",
"UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E",
"UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E",
"UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-E", "UP-W",
"UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W",
"UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W",
"UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W",
"UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "UP-W", "WB", "WB", "WB",
"WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB",
"WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB", "WB",
"WB", "WB", "WB", "WB", "WB", "WB"), Date = structure(c(17879,
17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888,
17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897,
17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906,
17907, 17908, 17909, 17879, 17880, 17881, 17882, 17883, 17884,
17885, 17886, 17887, 17888, 17889, 17890, 17891, 17892, 17893,
17894, 17895, 17896, 17897, 17898, 17899, 17900, 17901, 17902,
17903, 17904, 17905, 17906, 17907, 17908, 17909, 17879, 17880,
17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888, 17889,
17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897, 17898,
17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906, 17907,
17908, 17909, 17879, 17880, 17881, 17882, 17883, 17884, 17885,
17886, 17887, 17888, 17889, 17890, 17891, 17892, 17893, 17894,
17895, 17896, 17897, 17898, 17899, 17900, 17901, 17902, 17903,
17904, 17905, 17906, 17907, 17908, 17909, 17879, 17880, 17881,
17882, 17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890,
17891, 17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899,
17900, 17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908,
17909, 17879, 17880, 17881, 17882, 17883, 17884, 17885, 17886,
17887, 17888, 17889, 17890, 17891, 17892, 17893, 17894, 17895,
17896, 17897, 17898, 17899, 17900, 17901, 17902, 17903, 17904,
17905, 17906, 17907, 17908, 17909, 17879, 17880, 17881, 17882,
17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891,
17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900,
17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909,
17879, 17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887,
17888, 17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896,
17897, 17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905,
17906, 17907, 17908, 17909, 17879, 17880, 17881, 17882, 17883,
17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891, 17892,
17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900, 17901,
17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909, 17879,
17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888,
17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897,
17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906,
17907, 17908, 17909, 17879, 17880, 17881, 17882, 17883, 17884,
17885, 17886, 17887, 17888, 17889, 17890, 17891, 17892, 17893,
17894, 17895, 17896, 17897, 17898, 17899, 17900, 17901, 17902,
17903, 17904, 17905, 17906, 17907, 17908, 17909, 17879, 17880,
17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888, 17889,
17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897, 17898,
17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906, 17907,
17908, 17909, 17879, 17880, 17881, 17882, 17883, 17884, 17885,
17886, 17887, 17888, 17889, 17890, 17891, 17892, 17893, 17894,
17895, 17896, 17897, 17898, 17899, 17900, 17901, 17902, 17903,
17904, 17905, 17906, 17907, 17908, 17909, 17879, 17880, 17881,
17882, 17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890,
17891, 17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899,
17900, 17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908,
17909, 17879, 17880, 17881, 17882, 17883, 17884, 17885, 17886,
17887, 17888, 17889, 17890, 17891, 17892, 17893, 17894, 17895,
17896, 17897, 17898, 17899, 17900, 17901, 17902, 17903, 17904,
17905, 17906, 17907, 17908, 17909, 17879, 17880, 17881, 17882,
17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891,
17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900,
17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909,
17879, 17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887,
17888, 17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896,
17897, 17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905,
17906, 17907, 17908, 17909, 17879, 17880, 17881, 17882, 17883,
17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891, 17892,
17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900, 17901,
17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909, 17879,
17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888,
17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897,
17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906,
17907, 17908, 17909, 17879, 17880, 17881, 17882, 17883, 17884,
17885, 17886, 17887, 17888, 17889, 17890, 17891, 17892, 17893,
17894, 17895, 17896, 17897, 17898, 17899, 17900, 17901, 17902,
17903, 17904, 17905, 17906, 17907, 17908, 17909, 17879, 17880,
17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888, 17889,
17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897, 17898,
17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906, 17907,
17908, 17909, 17879, 17880, 17881, 17882, 17883, 17884, 17885,
17886, 17887, 17888, 17889, 17890, 17891, 17892, 17893, 17894,
17895, 17896, 17897, 17898, 17899, 17900, 17901, 17902, 17903,
17904, 17905, 17906, 17907, 17908, 17909, 17879, 17880, 17881,
17882, 17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890,
17891, 17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899,
17900, 17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908,
17909, 17879, 17880, 17881, 17882, 17883, 17884, 17885, 17886,
17887, 17888, 17889, 17890, 17891, 17892, 17893, 17894, 17895,
17896, 17897, 17898, 17899, 17900, 17901, 17902, 17903, 17904,
17905, 17906, 17907, 17908, 17909, 17879, 17880, 17881, 17882,
17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891,
17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900,
17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909,
17879, 17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887,
17888, 17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896,
17897, 17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905,
17906, 17907, 17908, 17909, 17879, 17880, 17881, 17882, 17883,
17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891, 17892,
17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900, 17901,
17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909, 17879,
17880, 17881, 17882, 17883, 17884, 17885, 17886, 17887, 17888,
17889, 17890, 17891, 17892, 17893, 17894, 17895, 17896, 17897,
17898, 17899, 17900, 17901, 17902, 17903, 17904, 17905, 17906,
17907, 17908, 17909), class = "Date"), variable = structure(c(7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L), class = "factor", .Label = c("sessionrank", "voltedroprank",
"mutecallraterank", "ipthroughputrank", "hosrrank", "cqirank",
"rankofmeanrank")), value = c(7L, 10L, 10L, 22L, 10L, 9L, 7L,
8L, 7L, 8L, 7L, 9L, 13L, 8L, 14L, 12L, 14L, 3L, 11L, 6L, 4L,
6L, 4L, 9L, 10L, 13L, NA, 8L, 9L, 10L, 9L, 26L, 24L, 22L, 24L,
27L, 24L, 24L, 18L, 25L, 24L, 23L, 25L, 21L, 24L, 28L, NA, 26L,
28L, 25L, 24L, 24L, 25L, 25L, 25L, 24L, 25L, 22L, 28L, 24L, 22L,
22L, 28L, 28L, 26L, 27L, 26L, 27L, 27L, NA, NA, 26L, 28L, 23L,
23L, 27L, 24L, 18L, 22L, 24L, 24L, 22L, 22L, 22L, 24L, 24L, 25L,
23L, 21L, 26L, 23L, 25L, 24L, 19L, 19L, 16L, 25L, 21L, 21L, 19L,
15L, 20L, 21L, 21L, 18L, 19L, 21L, 20L, NA, NA, 19L, 15L, 16L,
15L, 16L, 15L, 13L, 19L, 18L, 15L, 18L, 18L, 17L, 19L, 17L, 18L,
19L, 18L, 18L, 19L, 17L, NA, 17L, 19L, 19L, 19L, 17L, 19L, 19L,
15L, 16L, 20L, 21L, 19L, NA, 21L, 19L, 21L, 22L, 20L, NA, 19L,
20L, 20L, 18L, 25L, 27L, 24L, 19L, 19L, 25L, 23L, NA, 21L, 17L,
24L, NA, NA, 25L, 26L, 19L, 24L, 27L, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 27L, NA, NA, NA, 8L, 5L, 2L, 5L, 4L, 8L, 4L, 5L,
11L, 11L, 12L, 14L, 10L, 13L, 17L, 8L, 12L, 13L, 7L, 13L, 8L,
10L, 6L, 11L, 11L, 6L, 9L, 11L, 10L, 7L, 5L, 5L, 7L, 11L, 7L,
6L, 6L, 6L, 6L, 6L, 5L, 4L, 3L, 4L, 7L, 2L, 7L, 8L, 12L, 10L,
8L, 5L, 5L, 10L, 12L, 9L, 8L, 5L, 10L, 6L, 9L, 10L, 4L, 6L, 12L,
6L, 7L, 5L, 5L, 3L, 8L, 22L, 5L, 10L, 5L, 4L, 9L, NA, 19L, 15L,
4L, NA, 18L, 17L, 14L, 17L, 8L, 7L, 8L, 13L, 8L, 13L, 13L, 21L,
17L, 15L, 20L, 20L, 20L, 20L, NA, 14L, 15L, 14L, 7L, 8L, 14L,
15L, 11L, 9L, 14L, 18L, 14L, 10L, 11L, 12L, 18L, 15L, 17L, 12L,
17L, 13L, 15L, 16L, 9L, 14L, 14L, 13L, 13L, 16L, 14L, 11L, 12L,
13L, 13L, 6L, 11L, 16L, 18L, 10L, 13L, 16L, 14L, 18L, 16L, 14L,
20L, 16L, 16L, 15L, 14L, 21L, 15L, 16L, 11L, 12L, 12L, 5L, 11L,
11L, 14L, 11L, NA, 10L, 7L, 15L, 4L, 16L, 9L, 11L, 9L, 10L, 7L,
6L, 12L, 13L, 12L, 13L, 15L, 18L, 16L, 13L, 14L, 14L, 12L, 15L,
13L, 2L, 8L, 4L, 5L, 2L, NA, 4L, 3L, 3L, 6L, 11L, 6L, 3L, 6L,
4L, 4L, 8L, 5L, 3L, 11L, 1L, 1L, 3L, 2L, 11L, 11L, 4L, 4L, 4L,
8L, 10L, 11L, 7L, 15L, 16L, 10L, 13L, NA, 9L, 10L, 10L, 15L,
7L, 10L, 10L, 6L, 15L, 9L, 17L, 9L, 7L, 7L, 5L, 10L, 7L, 3L,
4L, 12L, NA, 8L, 6L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 9L, 1L, 1L, 1L,
1L, 1L, 1L, 3L, 1L, 20L, 22L, 18L, 12L, 12L, 17L, 15L, NA, NA,
NA, 11L, NA, NA, 18L, 16L, 13L, 11L, 10L, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 16L, NA, NA, NA, 6L, 8L, 6L, 10L, 8L, 7L, 8L,
7L, 5L, 6L, 9L, 5L, 9L, 6L, 3L, NA, NA, 4L, 9L, 5L, 3L, 4L, 8L,
5L, 5L, 4L, 7L, 7L, 7L, 6L, 4L, 24L, 23L, 17L, 21L, 25L, 26L,
25L, NA, 22L, 18L, 25L, NA, NA, 26L, 25L, 20L, 23L, 26L, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 25L, NA, NA, NA, 23L, 26L, 25L,
26L, 28L, 28L, 26L, 19L, 26L, 25L, 27L, 24L, 24L, 28L, 27L, NA,
25L, 25L, 22L, 23L, 23L, 24L, 23L, 23L, 23L, 24L, 20L, 23L, 21L,
24L, 25L, 18L, 20L, 21L, 14L, 23L, 18L, 18L, 14L, 18L, 14L, 20L,
17L, 18L, 20L, 21L, 14L, 17L, 18L, 16L, 15L, 17L, 15L, 16L, 14L,
14L, 19L, 17L, 15L, 16L, 19L, 20L, 3L, 3L, 4L, 1L, 3L, 3L, 3L,
2L, 4L, 4L, 3L, 12L, 3L, 2L, 5L, 2L, 2L, 5L, 3L, 4L, 12L, 8L,
3L, 4L, 3L, 2L, 2L, 3L, 3L, 2L, 3L, 16L, 16L, NA, 9L, 17L, 15L,
16L, 12L, 16L, 20L, 18L, 20L, NA, 17L, 12L, 16L, 18L, 21L, 20L,
17L, 19L, 19L, 18L, 19L, 17L, 14L, 16L, 20L, 17L, 18L, 17L, 14L,
9L, 3L, 16L, 14L, 11L, 9L, 9L, 13L, 9L, 8L, 8L, 15L, 15L, 13L,
5L, 7L, 6L, 13L, 7L, 6L, 9L, 7L, 7L, 12L, 10L, NA, 9L, 11L, 14L,
12L, 2L, 4L, NA, 3L, 1L, 4L, 2L, NA, 2L, 2L, 2L, 2L, 2L, 5L,
4L, 3L, 3L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 4L, 5L, 3L, 2L, 2L, 1L,
2L, 11L, 13L, 9L, 8L, 9L, 13L, 12L, 13L, 19L, 12L, 17L, 13L,
12L, 11L, 8L, NA, 5L, 11L, 8L, 11L, 14L, 13L, 11L, 6L, 6L, 9L,
6L, 5L, 5L, 5L, 7L, 27L, 25L, 23L, 23L, 22L, 23L, 22L, 17L, 24L,
23L, 22L, 22L, 20L, 22L, 22L, 17L, 21L, 22L, 23L, 21L, 20L, 23L,
22L, 22L, 20L, 22L, 19L, 22L, 22L, 23L, 23L, 15L, 15L, 13L, 17L,
15L, 12L, 10L, 10L, 15L, 16L, 16L, 16L, 14L, 12L, 7L, NA, 6L,
17L, 12L, 10L, 9L, 18L, 17L, 8L, 13L, 12L, 10L, 6L, 12L, 11L,
14L, 22L, 21L, 20L, NA, 24L, 22L, 21L, 16L, 23L, NA, 26L, 21L,
22L, 23L, 23L, NA, 20L, 23L, 19L, 20L, 21L, 20L, 21L, 20L, 21L,
21L, 18L, 24L, 19L, 21L, 21L), sequence = 1:868), row.names = c(NA,
-868L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x0000000000231ef0>, index = structure(integer(0), "`__Short name`" = integer(0)))
数据的头和尾
> head(onlyrank)
Short name Date variable value sequence
1: AP 2018-12-14 rankofmeanrank 7 1
2: AP 2018-12-15 rankofmeanrank 10 2
3: AP 2018-12-16 rankofmeanrank 10 3
4: AP 2018-12-17 rankofmeanrank 22 4
5: AP 2018-12-18 rankofmeanrank 10 5
6: AP 2018-12-19 rankofmeanrank 9 6
> > tail(onlyrank)
Short name Date variable value sequence
1: WB 2019-01-08 rankofmeanrank 21 863
2: WB 2019-01-09 rankofmeanrank 18 864
3: WB 2019-01-10 rankofmeanrank 24 865
4: WB 2019-01-11 rankofmeanrank 19 866
5: WB 2019-01-12 rankofmeanrank 21 867
6: WB 2019-01-13 rankofmeanrank 21 868
并且gganimate + ggplot代码为
r1 <- ggplot(onlyrank,aes(x=Date,y=value,group=`Short name`))+
geom_line(aes(size=2,colour=`Short name`,group=`Short name`),
alpha=0.9,show.legend = FALSE)+
geom_point(aes(colour=`Short name`),size=3,show.legend = FALSE)+
geom_segment(aes(xend=lastdate,yend=value),linetype=2)+
geom_text(aes(x=lastdate+1,y=value,
label=paste0(`Short name`,"(",value,")")))+
scale_y_reverse()+
coord_cartesian(clip="off")+
transition_reveal(along=sequence)+
ease_aes()
animate(r1,renderer = gifski_renderer(file="ranking.gif"),
width = 1280, height = 720,nframes = 200)
到目前为止很好..基于所创建的动画..我有一些探针和愿望
问题
1。我的geom_points似乎没有显示..为什么?(组中有问题吗?即使显式设置组aes也不起作用)
更新28/1 充分理解API之后,我意识到我需要在geom_point中正确添加组,如下所示:
geom_point(aes(group =sequence),colour="black",size=3,show.legend = FALSE)
现在这些点已正确可见
2。Dates上的动画无法渲染覆盖所有日期,渲染(补间?)在几个日期上成块状出现。.似乎没有畅通无阻。不同的nframe一直达到700,每秒fps动画直到25 ..零星的感觉仍然存在..我严重怀疑我正在做的一些基本错误..那我需要纠正什么错误?>
更新28/01
我将nframe缩放到3000,最终动画变得平滑了,但是gif的大小增加到了29 MB(由于大小我无法上传)。所以问如何将其缩小为更小的尺寸?< / strong>
所以最终代码现在看起来如下所示
lastdate<-sort(unique(onlyrank$Date),decreasing = TRUE)[1]+1
r1 <- ggplot(onlyrank,aes(x=Date,y=value))+
geom_line(aes(colour=`Short name`,group=`Short name`),size=2,alpha=0.9,show.legend = FALSE)+
geom_point(aes(group =sequence),colour="black",size=3,show.legend = FALSE)+
geom_segment(aes(xend=lastdate,yend=value,group=`Short name`),linetype=2)+
geom_text(aes(x=lastdate+1,y=value,label=paste0(`Short name`,"(",value,")"),group=`Short name`,colour=`Short name`))+
scale_y_reverse()+
coord_cartesian(clip="off")+
transition_reveal(along=sequence)+
ease_aes()
animate(r1,renderer = renderer = gifski_renderer(file="ranking.gif"),width = 1280, height = 720,nframes = 3000)
更新02-02 使用出色的 gifsicle 可以将其缩小为较小的版本
愿望
3.i希望将该状态的geom_line的能见度(αalpha)设置为最小,以便在整个日期范围内充分显示。.以确保当前显示的状态不会在混乱中丢失
更新28/01 这个问题还没有解决。.我还没有一点线索,如果transition_reveal可以与enter_ *&exit _ * ...任何帮助一起使用
更新02/02
仍然很杂乱..所以在通过动画后,如何将每行涂成灰色...
有人在偷看和建议吗?
最佳问候 拉吉卜