XGBoost错误:/workspace/src/metric/elementwise_metric.cc:28:检查失败:preds.size()== info.labelsSize()(

时间:2019-01-25 20:28:16

标签: python-3.x machine-learning

我是机器学习的新手,正试图解决kaggle竞争的房屋价格问题。.我正在尝试运行此代码并拟合此模型,但输出错误。.由于我是新手,请提供帮助并进行解释。 ..提前谢谢

我尝试在Google中搜索,但显示多类错误,不知道它是什么,并将解决方案显示为“ mlogloss”或“ merror”

import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from learntools.core import *
from xgboost import XGBRegressor


iowa_file_path = '../input/train.csv'

home_data = pd.read_csv(iowa_file_path)

y = home_data.SalePrice

features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 
'BedroomAbvGr', 'TotRmsAbvGrd']
X = home_data[features]


train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)


iowa_model = XGBRegressor(n_estimators=1000,learning_rate=0.05)

iowa_model.fit(train_X, train_y,early_stopping_rounds=5,eval_set= 
[(train_X,val_y)],verbose=False)

1 个答案:

答案 0 :(得分:0)

您尝试了“错别字”

iowa_model.fit(train_X, train_y,early_stopping_rounds=5,eval_set= [(val_X,val_y)],verbose=False)