我无法确定某种型号
没问题
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Flatten, Conv2D,MaxPooling2D
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(192,64,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
saved_to_path = tf.keras.experimental.export(
model, '/tensorflow-serving/test/my_simple_tf_keras_saved_model')
问题
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Flatten, Conv2D,MaxPooling2D
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(192,64,1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
saved_to_path = tf.keras.experimental.export(
model, '/tensorflow-serving/test/my_simple_tf_keras_saved_model')
错误
当我运行非服务器模型时
{ "error": "Fused conv implementation does not support grouped convolutions for now.\n\t [[{{node conv2d/BiasAdd}}]]" }
Conv2D
不适用于一个频道。但是可以使用三个频道。
我需要一个单通道输入信号。怎样成为?
需要
Conv2D(32, (3, 3), input_shape=(192,64,1))
是包还是特色?