因此,我尝试通过云功能更新云Firestore中的日期时间字段,如下所示:
transaction.update(doc_ref, {'dateTimeField1': dateTimeValue})
Google在云函数的事件参数中以字符串%Y-%m-%dT%H:%M:%SZ
或%Y-%m-%dT%H:%M:%S.%fZ
的形式将日期时间对象作为字符串发送。
例如:2019-01-25T15:25:03.881Z
我将其转换为datetime对象,如下所示:
try:
datetime_obj = datetime.datetime.strptime(datetime_obj, '%Y-%m-%dT%H:%M:%S.%fZ')
except:
datetime_obj = datetime.datetime.strptime(datetime_obj, '%Y-%m-%dT%H:%M:%SZ')
datetime_obj = datetime_obj.replace(tzinfo=timezone('UTC'))
但是当我尝试执行该操作时,出现以下错误:
AttributeError: _nanosecond
跟踪:
File "/env/local/lib/python3.7/site-packages/google/cloud/firestore_v1beta1/batch.py", line 112, in update
reference._document_path, field_updates, option
File "/env/local/lib/python3.7/site-packages/google/cloud/firestore_v1beta1/_helpers.py", line 822, in pbs_for_update
update_pb = extractor.get_update_pb(document_path)
File "/env/local/lib/python3.7/site-packages/google/cloud/firestore_v1beta1/_helpers.py", line 459, in get_update_pb
name=document_path, fields=encode_dict(self.set_fields)
File "/env/local/lib/python3.7/site-packages/google/cloud/firestore_v1beta1/_helpers.py", line 215, in encode_dict
return {key: encode_value(value) for key, value in six.iteritems(values_dict)}
File "/env/local/lib/python3.7/site-packages/google/cloud/firestore_v1beta1/_helpers.py", line 215, in <dictcomp>
return {key: encode_value(value) for key, value in six.iteritems(values_dict)}
File "/env/local/lib/python3.7/site-packages/google/cloud/firestore_v1beta1/_helpers.py", line 169, in encode_value
return document_pb2.Value(timestamp_value=value.timestamp_pb())
File "/env/local/lib/python3.7/site-packages/google/api_core/datetime_helpers.py", line 278, in timestamp_pb
nanos = self._nanosecond or self.microsecond * 1000
AttributeError: _nanosecond
是否允许通过交易设置日期时间,或者我在这里错过了什么?
编辑:
代码段:
@firestore.transactional
def update_datetime_field(transaction, doc_ref, datetime_value):
try:
datetime_obj = datetime.datetime.strptime(datetime_value, '%Y-%m-%dT%H:%M:%S.%fZ')
except:
datetime_obj = datetime.datetime.strptime(datetime_value, '%Y-%m-%dT%H:%M:%SZ')
datetime_obj = datetime_obj.replace(tzinfo=timezone('UTC'))
# Example of datetime_obj -> datetime.datetime(2019, 1, 25, 15, 25, 3, 881000, tzinfo=<UTC>)
transaction.update(doc_ref, {'datetimeField1': datetime_obj})
return True
更多信息:
collection1/document1/collection2/document2
编辑2:
更好的完整图片:
from firebase_admin import credentials, firestore
# initialize firebase admin sdk
creds = credentials.ApplicationDefault()
firebase_admin.initialize_app(creds,{'projectId': 'myProjectId'})
@firestore.transactional
def update_datetime_field(transaction, doc_ref, datetime_value):
try:
datetime_obj = datetime.datetime.strptime(datetime_value, '%Y-%m-%dT%H:%M:%S.%fZ')
except:
datetime_obj = datetime.datetime.strptime(datetime_value, '%Y-%m-%dT%H:%M:%SZ')
datetime_obj = datetime_obj.replace(tzinfo=timezone('UTC'))
# Example of datetime_obj -> datetime.datetime(2019, 1, 25, 15, 25, 3, 881000, tzinfo=<UTC>)
transaction.update(doc_ref, {'datetimeField1': datetime_obj})
return True
def update_datetime_in_transaction(event, context):
datetime_value = event['value']['fields']['datetimeField1']['timestampValue']
# this looks something like 2019-01-25T15:25:03.881Z
# prepare document reference to document
doc_ref = prepare_doc_ref(event, context)
# update_datetime_field
client = firestore.client()
transaction = client.transaction()
update_datetime_field(transaction, doc_ref, datetime_value)
return True
编辑3:
答案 0 :(得分:2)
因此,firestore python sdk希望使用_nanosecond
属性,该属性目前在python标准库的日期时间中不可用(将在以后添加。更多详细信息here)
因此,在检查了他们的代码库之后,我发现了一个名为DatetimeWithNanoseconds
的类,该类为传统的日期时间对象添加了纳秒级的支持。
该类的代码(google / api_core中的datetime_helpers.py文件)如下(为简洁起见,故意删除了某些部分):
class DatetimeWithNanoseconds(datetime.datetime):
"""Track nanosecond in addition to normal datetime attrs.
Nanosecond can be passed only as a keyword argument.
"""
__slots__ = ('_nanosecond',)
@classmethod
def from_rfc3339(cls, stamp):
with_nanos = _RFC3339_NANOS.match(stamp)
if with_nanos is None:
raise ValueError(
'Timestamp: {}, does not match pattern: {}'.format(
stamp, _RFC3339_NANOS.pattern))
bare = datetime.datetime.strptime(
with_nanos.group('no_fraction'), _RFC3339_NO_FRACTION)
fraction = with_nanos.group('nanos')
if fraction is None:
nanos = 0
else:
scale = 9 - len(fraction)
nanos = int(fraction) * (10 ** scale)
return cls(bare.year, bare.month, bare.day,
bare.hour, bare.minute, bare.second,
nanosecond=nanos, tzinfo=pytz.UTC)
因此,现在,我可以使用datetime.datetime
方法使用此类而不是DatetimeWithNanoseconds.from_rfc3339(timestamp)
来解析在云函数的事件参数中以字符串形式发送的日期时间。
示例:
from google.api_core.datetime_helpers import DatetimeWithNanoseconds
d1 = DatetimeWithNanoseconds.from_rfc3339('2019-01-25T15:25:03.881Z')
print(d1)
# DatetimeWithNanoseconds(2019, 1, 25, 15, 25, 3, 881000, tzinfo=<UTC>)
该类还具有rfc3339()
方法来为您提供字符串表示形式。
示例:
d1.rfc3339()
# 2019-01-25T15:25:03.881Z
替代解决方案:
您也可以使用pandas.Timestamp()
代替DatetimeWithNanoseconds.from_rfc3339()
。
示例:
import pandas as pd
d1 = pd.Timestamp('2019-01-25T15:25:03.881Z')
print(d1)
# Timestamp('2019-01-25 15:25:03.881000+0000', tz='UTC')
我建议使用DatetimeWithNanoseconds
,因为它与sdk一起提供,并且您不需要在requirements.txt
中添加熊猫的额外依赖关系,这可以增加冷启动期间的调用延迟。更多详细信息here。
希望这会有所帮助。