我正在尝试对用C ++实现的一组较大算法的相对较小部分进行基准测试。为简化起见,可以说每种算法都是通过两个函数(分别称为foo()
和bar()
)实现的,这些函数可以按任意顺序重复调用,并且这些函数可以对某些内部算法进行更改数据结构。除其他外,我想通过分别测量在foo()
和bar()
中花费的总时间来比较算法的性能。
现在我有两种算法:算法A在foo()
中有一些工作,但是在bar()
中却很少,而算法B在foo()
中却没有任何作用(foo()
是实际上这里是一个空函数),但bar()
中有很多工作。我在这里观察到的意外情况是,在许多情况下,算法B在foo()
中花费的总时间大于算法A在foo()
中花费的总时间。经过一些调试后,我发现对于算法B,在调用bar()之后对foo()的第一次调用会花费很多时间,而对foo()的后续调用往往会更快。
为了确定这种效果,我想出了算法B的以下简化形式,它包括一个空函数(对应于foo()
)和两个我试图模拟工作的函数(对应于bar()
,“实际” bar()
基本上也只是分配空间并在数据结构上迭代):
b.h:
#ifndef B_H
#define B_H
void foo_emptyFunction(unsigned long long u); // foo()
void bar_expensiveFunction1(); // bar() - version 1
void bar_expensiveFunction2(); // bar() - version 2
#endif
b.cpp
#include "b.h"
#include <iostream>
#include <vector>
#include <math.h>
void foo_emptyFunction(unsigned long long )
{
// nothing
}
void bar_expensiveFunction1() {
std::vector<unsigned long> vec;
for (auto i = 0UL; i < 1000000UL; i++) {
vec.push_back(i);
}
std::cout << "Created and filled a vector with " << vec.size() << " elements." << std::endl;
}
void bar_expensiveFunction2() {
std::vector<unsigned long> vec;
for (auto i = 1UL; i <= 1000000UL; i++) {
vec.push_back(i);
}
auto sum = 0ULL;
auto sumSqrts = 0.0;
for (auto i : vec) {
sum += i;
sumSqrts += sqrt(i);
}
std::cout << "Sum of elements from " << vec.front()
<< " to " << vec.back() << " is " << sum
<< ", the sum of their square roots is " << sumSqrts << "." << std::endl;
}
然后我尝试测量一次``昂贵''的调用之后多次调用空函数所需的时间:
main.cpp:
#include "b.h"
#include <chrono>
#include <thread>
#include <iostream>
#include <math.h>
typedef std::chrono::high_resolution_clock sclock;
typedef unsigned long long time_interval;
typedef std::chrono::duration<time_interval, std::chrono::nanoseconds::period> time_as;
void timeIt() {
auto start = sclock::now();
auto end = start;
for (auto i = 0U; i < 10U; i++) {
start = sclock::now();
asm volatile("" ::: "memory");
foo_emptyFunction(1000ULL);
asm volatile("" ::: "memory");
end = sclock::now();
std::cout << "Call #" << i << " to empty function took " << std::chrono::duration_cast<time_as>(end - start).count() << "ns." << std::endl;
}
}
int main()
{
timeIt();
bar_expensiveFunction1();
timeIt();
std::this_thread::sleep_for(std::chrono::milliseconds(100));
std::cout << "Slept for 100ms." << std::endl;
timeIt();
bar_expensiveFunction2();
timeIt();
bar_expensiveFunction1();
timeIt();
return 0;
}
如果我编译(g++ -o test main.cpp b.cpp
或g++ -O3 -o test main.cpp b.cpp
并运行代码,则会得到类似以下的输出:
./ test
Call #0 to empty function took 79ns.
Call #1 to empty function took 57ns.
Call #2 to empty function took 55ns.
Call #3 to empty function took 31ns.
Call #4 to empty function took 35ns.
Call #5 to empty function took 26ns.
Call #6 to empty function took 26ns.
Call #7 to empty function took 36ns.
Call #8 to empty function took 24ns.
Call #9 to empty function took 26ns.
Created and filled a vector with 1000000 elements.
Call #0 to empty function took 84ns.
Call #1 to empty function took 27ns.
Call #2 to empty function took 28ns.
Call #3 to empty function took 27ns.
Call #4 to empty function took 29ns.
Call #5 to empty function took 27ns.
Call #6 to empty function took 29ns.
Call #7 to empty function took 33ns.
Call #8 to empty function took 28ns.
Call #9 to empty function took 23ns.
Slept for 100ms.
Call #0 to empty function took 238ns.
Call #1 to empty function took 106ns.
Call #2 to empty function took 102ns.
Call #3 to empty function took 118ns.
Call #4 to empty function took 199ns.
Call #5 to empty function took 92ns.
Call #6 to empty function took 216ns.
Call #7 to empty function took 118ns.
Call #8 to empty function took 113ns.
Call #9 to empty function took 107ns.
Sum of elements from 1 to 1000000 is 500000500000, the sum of their square roots is 6.66667e+08.
Call #0 to empty function took 126ns.
Call #1 to empty function took 35ns.
Call #2 to empty function took 31ns.
Call #3 to empty function took 30ns.
Call #4 to empty function took 38ns.
Call #5 to empty function took 54ns.
Call #6 to empty function took 29ns.
Call #7 to empty function took 35ns.
Call #8 to empty function took 30ns.
Call #9 to empty function took 29ns.
Created and filled a vector with 1000000 elements.
Call #0 to empty function took 112ns.
Call #1 to empty function took 23ns.
Call #2 to empty function took 23ns.
Call #3 to empty function took 23ns.
Call #4 to empty function took 23ns.
Call #5 to empty function took 22ns.
Call #6 to empty function took 23ns.
Call #7 to empty function took 23ns.
Call #8 to empty function took 24ns.
Call #9 to empty function took 23ns.
我怀疑运行时间的差异(尤其是第一次调用时的高峰)可能是由于某种缓存效果引起的,但是我真的很想了解这里发生了什么。
编辑:我在这里观察到的效果与实际代码中的效果非常相似。第一次通话几乎总是有一个巨大的峰值,从第三次通话开始它一直是恒定的。我怀疑这种效果在实际代码中甚至更加明显,因为B::bar()
在现实中会做更多的工作(它遍历一个图形,而不仅仅是遍历整数列表)。不幸的是,真正的代码是一个相当大的项目的一部分,所以我不能在这里发布它。我上面发布的代码是原始代码的相当大的简化,但似乎显示出相同的效果。实际上,foo()
和bar()
都是虚拟的(我知道这会带来时间损失),并且位于不同的补充单元中,因此编译器无法优化函数调用。另外,我还检查了真实程序的汇编程序。我也意识到以下事实:我不可避免地还会测量调用now()的时间-但我对算法A使用了相同的基准测试代码(至少在其foo()
的实现中做了一些工作)和总时间A::foo()
的度量值要小于...
优化级别似乎对该效果没有太大影响,而且我对clang也有相同的行为。
编辑2:我还在专用计算机(Linux,仅系统进程,cpu频率调节器设置为性能)上运行算法基准测试。
此外,我知道通常当您进行这种微基准测试时,您会执行诸如缓存预热和将要基准测试的代码部分重复多次的工作。不幸的是,每次对foo()
或bar()
的调用都可能会修改内部数据结构,因此我不能仅仅重复它们。如果有任何改进建议,我将不胜感激。
谢谢!
答案 0 :(得分:2)
我注意到睡眠后基准测试的表现更差。这可能是由于CPU进入了较低的频率/功率模式。
在进行基准测试之前,请将CPU频率固定为最大,以便CPU在基准测试期间不会对其进行调整。
在Linux上:
$ sudo cpupower --cpu all frequency-set --related --governor performance
在Windows上,将电源计划设置为“高性能”。