在遵循本(https://medium.com/@klintcho/creating-an-open-speech-recognition-dataset-for-almost-any-language-c532fb2bc0cf)教程的同时,我创建了语音数据集以进行DeepSpeech训练。
但是,我无法使用深语音训练数据集。
由于像这样的训练命令,它给出了一个错误
python DeepSpeech.py --train_files /mnt/c/wsl/teneke_out_bolum1/
它抛出一个错误:
pandas.errors.ParserError:标记数据时出错。 C错误:在源上调用read(nbytes)失败。试试engine ='python'。
我已经在通过力气对齐和使用微调进行微调之后创建了数据集:
这是我在Google Colab上用于DeepSpeech训练的代码:
https://gist.github.com/mustafaxfe/d20be114ca7cea5c47ea5cc85653c761
我在Google上找到了一些解决方案,例如
data = pd.read_csv('file1.csv', error_bad_lines=False)
我也可以通过设置
解决错误输出engine ='python'
但是,我不知道应该在哪里更改。
因此,我应该在哪里进行编辑以解决此问题。
谢谢。
答案 0 :(得分:0)
您的命令需要重新访问:
您的运行命令应如下所示。检查文档并修改您的需求。
python3 -u DeepSpeech.py \
--train_files /data/phonetic_speech_dta/train/train.csv \
--dev_files /data/phonetic_speech_dta/dev/dev.csv \
--test_files /data/phonetic_speech_dta/test/test.csv \
--train_batch_size 64 \
--dev_batch_size 32 \
--test_batch_size 64 \
--n_hidden 800\
--validation_step 1\
--display_step 1 \
--epoch 100 \
--log_level 1 \
--dropout_rate 0.2 \
--learning_rate 0.001 \
--drop_count_weight 3.5 \
--export_dir /speech2text/norwegian_model/results/model_export/ \
--checkpoint_dir /speech2text/norwegian_model/results/checkpoint/ \
--decoder_library_path /home/nvidia/tensorflow/bazel-bin/native_client/libctc_decoder_with_kenlm.so \
--alphabet_config_path /speech2text/norwegian_model/alphabet.txt \
--lm_binary_path /speech2text/norwegian_model/lm.binary \
--lm_trie_path /speech2text/norwegian_model/trie