我需要找到每月的累计订单总数。我有2列OrderDate和OrderId。由于数据太大,我无法使用列表来查找累积数字。并且结果应为year_month格式,以及每个月的累计订单总数。
orderDate OrderId
2011-11-18 06:41:16 23
2011-11-18 04:41:16 2
2011-12-18 06:41:16 69
2012-03-12 07:32:15 235
2012-03-12 08:32:15 234
2012-03-12 09:32:15 235
2012-05-12 07:32:15 233
desired Result
Date CumulativeOrder
2011-11 2
2011-12 3
2012-03 6
2012-05 7
我已将我的excel导入pycharm并使用熊猫来读取excel 我试图将datetime列拆分为年和月,然后进行分组,但未获得正确的结果。
df1 = df1[['OrderId','orderDate']]
df1['year'] = pd.DatetimeIndex(df1['orderDate']).year
df1['month'] = pd.DatetimeIndex(df1['orderDate']).month
df1.groupby(['year','month']).sum().groupby('year','month').cumsum()
print (df1)
答案 0 :(得分:1)
将列转换为日期时间,然后按to_period
转换为月周期,按numpy.arange
添加新列,最后根据列Date
和DataFrame.drop_duplicates
删除重复项,并保留最后一个重复项:
import numpy as np
df1['orderDate'] = pd.to_datetime(df1['orderDate'])
df1['Date'] = df1['orderDate'].dt.to_period('m')
#use if not sorted datetimes
#df1 = df1.sort_values('Date')
df1['CumulativeOrder'] = np.arange(1, len(df1) + 1)
print (df1)
orderDate OrderId Date CumulativeOrder
0 2011-11-18 06:41:16 23 2011-11 1
1 2011-11-18 04:41:16 2 2011-11 2
2 2011-12-18 06:41:16 69 2011-12 3
3 2012-03-12 07:32:15 235 2012-03 4
df2 = df1.drop_duplicates('Date', keep='last')[['Date','CumulativeOrder']]
print (df2)
Date CumulativeOrder
1 2011-11 2
2 2011-12 3
3 2012-03 4
另一种解决方案:
df2 = (df1.groupby(df1['orderDate'].dt.to_period('m')).size()
.cumsum()
.rename_axis('Date')
.reset_index(name='CumulativeOrder'))
print (df2)
Date CumulativeOrder
0 2011-11 2
1 2011-12 3
2 2012-03 6
3 2012-05 7