我正在尝试导出Tensorflow模型,以便可以在Tensorflow服务中使用它。这是我使用的脚本:
import os
import tensorflow as tf
trained_checkpoint_prefix = '/home/ubuntu/checkpoint'
export_dir = os.path.join('m', '0')
loaded_graph = tf.Graph()
config=tf.ConfigProto(allow_soft_placement=True)
with tf.Session(graph=loaded_graph, config=config) as sess:
# Restore from checkpoint
loader = tf.train.import_meta_graph(trained_checkpoint_prefix + 'file.meta')
loader.restore(sess, tf.train.latest_checkpoint(trained_checkpoint_prefix))
# Create SavedModelBuilder class
# defines where the model will be exported
export_path_base = "/home/ubuntu/m"
export_path = os.path.join(
tf.compat.as_bytes(export_path_base),
tf.compat.as_bytes(str(0)))
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
batch_shape = (20, 256, 256, 3)
input_tensor = tf.placeholder(tf.float32, shape=batch_shape, name="X_content")
predictions_tf = tf.placeholder(tf.float32, shape=batch_shape, name='Y_output')
tensor_info_input = tf.saved_model.utils.build_tensor_info(input_tensor)
tensor_info_output = tf.saved_model.utils.build_tensor_info(predictions_tf)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'image': tensor_info_input},
outputs={'output': tensor_info_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'style_image':
prediction_signature,
})
builder.save(as_text=True)
主要问题是输出签名(predictions_tf)。在这种情况下,将其设置为 placeholder 时,我收到一条错误消息,当从gRPC调用模型时必须设置其值。我应该怎么用呢?
我尝试过
predictions_tf = tf.Variable(0, dtype=tf.float32, name="Y_output")
和
predictions_tf = tf.TensorInfo(dtype=tf.float32)
predictions_tf.name = "Y_output"
predictions_tf.dtype = tf.float32
答案 0 :(得分:1)
我可能会误解您想做的事情,但是基本上您在这里创建了一个新的SELECT
*
FROM (
SELECT
con.Id AS [Id]
, opp.Id AS [OpportunityId]
, acc.Id AS [AccountID]
, opp.Name AS [OpportunityName]
, opp.CreatedDate AS [CreatedDate]
, opp.StageName AS [OpportunityStage]
, con.FirstName AS [FirstName]
, con.LastName AS [LastName]
, con.MobilePhone AS [Mobile]
, con.Useractive__c AS [Useractive]
, con.Email AS [Email]
, con.HasOptedOutOfEmail AS [EmailOptOut]
, acc.Name AS [AccountName]
, acc.Total_Opportunities_in_Progress__c AS [AccOppotunityInProgress]
, acc.Total_Loan_Paid__c AS [AccTotalLoanPaid]
, acc.Total_Closed_Lost__c AS [AccTotalClosedLost]
, opp.Total_Opportunities_Loan_Funded__c AS [TotalOppsLoanFunded]
, CASE WHEN opp.StageName = 'Loan Funded' THEN 'X' ELSE 'FU' END AS ToUse
, ROW_NUMBER() OVER (PARTITION BY opp_con_role.ContactId
ORDER BY CASE WHEN opp.StageName = 'Loan Funded' THEN 1 ELSE 2 END, opp.CreatedDate DESC) AS RowNum
FROM [Opportunitycontactrole] Opp_Con_Role
INNER JOIN [Opportunity] opp ON Opp_Con_Role.Opportunityid = Opp.Id
INNER JOIN [Contact] con ON Opp_Con_Role.Contactid = Con.Id
INNER JOIN [account] acc ON acc.Id = opp.AccountId
WHERE con.Email IS NOT NULL
OR con.MobilePhone IS NOT NULL
) sr
WHERE RowNum = 1
ORDER BY
sr.OpportunityName
用于输入和一个新的placeholder
用于输出。
我认为应该做的是,一旦加载了模型,就必须在变量placeholder
和{{1}中获取模型的输入和输出张量。 }例如
input tensor