我创建了一个闪亮的应用程序,可从节点列表中提取软件组件及其版本。这样做的目的是在可能的情况下使我们所有的节点保持一致,此应用程序可帮助我们查看哪些节点不一致。
当前,您可以在“基准” handontable中修改版本,它将通过更改以及handsontable中的BaselineStats列来动态更新下面的数据透视表。这按预期工作。我被要求增加上传csv文件的功能,该文件将覆盖基准表,因此用户不必在每次加载应用程序时更改这些“基准”版本。
此外,有些组件是100%一致的。当前,这些选项未出现在“基准”操作列表中(因为这是显示不一致的工具),但是我添加了一个复选框,以便用户仍可以报告那些100%一致的组件。
由于某种原因,fileUpload和checkboxInput都没有更新,无论我在代码中戳多少戳,我都无法弄清楚为什么。
server.R
library(shiny)
library(rhandsontable)
library(rpivotTable)
library(dplyr)
library(stringr)
library(lubridate)
shinyServer(function(input, output) {
# Create dataframe
df.consistency <- structure(list(Node = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L), .Label = c("A", "B", "C",
"D"), class = "factor"), Component = structure(c(3L, 4L, 1L, 2L, 3L,
4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L), .Label = c("docker.version",
"kernel.version", "os.name", "os.version"), class = "factor"),
Version = structure(c(10L, 3L, 1L, 6L, 10L, 3L, 1L, 7L, 10L,
5L, 1L, 8L, 10L, 4L, 2L, 9L), .Label = c("1.12.1", "1.13.1",
"16.04", "17.04", "18.04", "3.10.0", "3.11.0", "3.12.0",
"3.13.0", "RedHat"), class = "factor")), class = "data.frame", row.names = c(NA,
-16L))
# Get Date Time
Report.Date <- Sys.Date()
df.baseline <- reactive({
inputFile <- input$uploadBaselineData
if(!is.null(inputFile)){
read.csv(inputFile$datapath, header = input$header)
} else{
if(input$showConsistent == FALSE){
# Count the number of occurrences for Version and Component, then remove the Components that are consistent (not duplicated => nn == 1) and then remove nn column
df.clusterCons.countComponent <- df.consistency %>%
add_count(Version, Component) %>%
add_count(Component) %>%
filter(nn > 1) %>%
select(-nn)
# Change back to dataframe after grouping
df.clusterCons.countComponent <- as.data.frame(df.clusterCons.countComponent)
# Components and Versions are shown for every node/cluster.
# Reduce this df to get only a unique Component:Version combinations
df.clusterCons.dist_tbl <- df.clusterCons.countComponent %>%
distinct(Component, Version, .keep_all = TRUE)
#Create a df that contains only duplicated rows (rows that are unique i.e. versions are consistent, are removed)
df.clusterCons.dist_tbl.dup <- df.clusterCons.dist_tbl %>%
filter(Component %in% unique(.[["Component"]][duplicated(.[["Component"]])]))
#Create a baseline df to be used to filter larger dataset later
#(baseline = max(n) for Version -- but must retain Component since that is the parameter we will use to filter on later)
df.clusterCons.baseline <- df.clusterCons.dist_tbl.dup[order(df.clusterCons.dist_tbl.dup$Component, df.clusterCons.dist_tbl.dup$n, decreasing = TRUE),]
df.clusterCons.baseline <- df.clusterCons.baseline[!duplicated(df.clusterCons.baseline$Component), ]
df.clusterCons.baseline <- df.clusterCons.baseline %>%
select(Component, Version)
}
else{
# Count the number of occurrences for Version and Component, then remove the Components that are consistent (not duplicated => nn == 1) and then remove nn column
df.clusterCons.countComponent <- df.consistency %>%
add_count(Version, Component) %>%
add_count(Component) %>%
select(-nn)
# Change back to dataframe after grouping
df.clusterCons.countComponent <- as.data.frame(df.clusterCons.countComponent)
# Components and Versions are shown for every node/cluster.
# Reduce this df to get only a unique Component:Version combinations
df.clusterCons.dist_tbl <- df.clusterCons.countComponent %>%
distinct(Component, Version, .keep_all = TRUE)
df.clusterCons.baseline <- df.clusterCons.dist_tbl[order(df.clusterCons.dist_tbl$Component, df.clusterCons.dist_tbl$n, decreasing = TRUE),]
df.clusterCons.baseline <- df.clusterCons.baseline[!duplicated(df.clusterCons.baseline$Component), ]
df.clusterCons.baseline <- df.clusterCons.baseline %>%
select(Component, Version)
}
}
})
df.componentVersionCounts <- df.consistency %>%
add_count(Component) %>%
rename("CountComponents" = n) %>%
add_count(Component, Version) %>%
rename("CountComponentVersions" = n) %>%
mutate("BaselineStats" = paste0("Baseline: ", round(CountComponentVersions / CountComponents * 100, 2), "% of Total: ", CountComponents)) %>%
select(Component, Version, BaselineStats) %>%
distinct(.keep_all = TRUE)
df.componentVersions_tbl <- reactive({
df.componentVersions_tbl <- df.baseline() %>%
distinct(Component, .keep_all = TRUE) %>%
select(Component, Version) %>%
left_join(df.componentVersionCounts, by = c("Component" = "Component", "Version" = "Version"))
})
# Report Date Output
output$reportDate <- renderText({
return(paste0("Report last run: ", Report.Date))
})
# handsontable showing baseline and allowing for an updated baseline
output$baseline_table <- rhandsontable::renderRHandsontable({
rhandsontable(df.componentVersions_tbl(), rowHeaders = NULL) %>%
hot_col("Component", readOnly = TRUE) %>%
hot_col("BaselineStats", readOnly = TRUE) %>%
hot_cols(columnSorting = TRUE) %>%
hot_context_menu(allowRowEdit = FALSE, allowColEdit = FALSE, filters = TRUE)
})
observe({
hot = isolate(input$baseline_table)
if(!is.null(input$baseline_table)){
handsontable <- hot_to_r(input$baseline_table)
df.clusterCons.baseline2 <- handsontable %>%
select(-BaselineStats)
df.componentVersions_tbl <- df.clusterCons.baseline2 %>%
left_join(df.componentVersionCounts, by = c("Component" = "Component", "Version" = "Version"))
output$baseline_table <- rhandsontable::renderRHandsontable({
rhandsontable(df.componentVersions_tbl, rowHeaders = NULL) %>%
hot_col("Component", readOnly = TRUE) %>%
hot_col("BaselineStats", readOnly = TRUE) %>%
hot_cols(columnSorting = TRUE) %>%
hot_context_menu(allowRowEdit = FALSE, allowColEdit = FALSE, filters = TRUE)
})
df.clusterIncons <- anti_join(df.consistency, handsontable, by = c("Component" = "Component", "Version" = "Version"))
df.clusterIncons <- df.clusterIncons
# Pivot Table showing data with inconsistencies
output$pivotTable <- rpivotTable::renderRpivotTable({
rpivotTable::rpivotTable(df.clusterIncons, rows = c("Cluster", "Node"), cols = "Component", aggregatorName = "List Unique Values", vals = "Version",
rendererName = "Table",
inclusions = list(Component = list("os.version", "os.name", "kernel.version", "docker.version")))
})
output$downloadBaselineData <- downloadHandler(
filename = function() {
paste('baselineData-', Sys.Date(), '.csv', sep='')
},
content = function(file) {
baseline_handsontable <- handsontable %>%
select(-BaselineStats)
write.csv(baseline_handsontable, file, row.names = FALSE)
}
)
output$downloadPivotData <- downloadHandler(
filename = function() {
paste('pivotData-', Sys.Date(), '.csv', sep='')
},
content = function(file) {
write.csv(df.clusterIncons, file, row.names = FALSE)
}
)
}
})
})
ui.R
library(shiny)
library(shinydashboard)
library(rhandsontable)
library(rpivotTable)
dashboardPage(
dashboardHeader(title = "Test Dashboard", titleWidth = "97%"),
dashboardSidebar(
collapsed = TRUE,
sidebarMenu(
menuItem("App", tabName = "app", icon = icon("table"))
)
),
dashboardBody(
tabItems(
tabItem("app",
fluidRow(
box(width = 3, background = "light-blue",
"This box includes details to the user about how the application works", br(), br(), br(),
verbatimTextOutput("reportDate")
),
box(width = 7, status = "info", title = "Version baselines based on greatest occurance",
rHandsontableOutput("baseline_table", height = "350px")
),
column(width = 2,
fluidRow(
fileInput("uploadBaselineData", "Upload Other Baseline Data:", multiple = FALSE,
accept = ".csv")
),
fluidRow(
downloadButton("downloadBaselineData", "Download Baseline Data")
),
br(),
fluidRow(
downloadButton("downloadPivotData", "Download Pivot Table Data")
),
br(),
fluidRow(
checkboxInput("showConsistent", "Show Consistent Components in baseline")
)
)
),
fluidRow(
box(width = 12, status = "info", title = "Nodes with versions inconsistent with baseline",
div(style = 'overflow-x: scroll', rpivotTable::rpivotTableOutput("pivotTable", height = "500px"))
)
)
)
)
)
)
我经常与反应性打交道,但是我不经常使用观察或隔离,所以这可能是我遇到问题的地方。我也尝试了新的reactlog软件包,但是我仍然不确定前进的方向。
答案 0 :(得分:1)
实际上,Shiny App的给定结构非常复杂,并且无法有效利用反应性。因此,首先我们可以从一个简单的应用开始,以确保基本组件正常运行,然后添加更多组件。
一些问题
所包含的数据帧df.consistency
会干扰您要添加的实际电抗组件。例如,if/else
流是有问题的,因为它总是跳到第一个else
,因为启动应用程序时csv不存在,并且读取它的表达式不正确,但是{{1} }始终可用。
重复了两次定义的相同组件,例如df.consistency
。
使用output$baseline_table
,您传递了一个未定义的参数read.csv
(如果您从示例here中选取此参数,则它指向复选框,但是在这里无效)。
最小应用
如果要从最小的应用程序开始,则可以从以下代码开始。这将使您能够:
header = input$header
以覆盖默认数据。csv
中查看结果。注意:
rhandsontable
是反应性的,这就是为什么使用它的其他表达式也是反应性的。
如果要根据复选框进行baseline_data
的不同计算,可以在表达式内添加df.componentVersionCounts
来编写两种情况的计算。
if/else