如何平均具有相同名称的列并忽略构成因素的列

时间:2019-01-23 16:03:56

标签: r

我想对具有相同名称模式的列中的数据求平均。如果只有数字数据,则其中一些示例会非常有用:

How to calculate the mean of those columns in a data frame with the same column name

但是,我也有一个影响因素的专栏。我可以删除此列,然后删除c(bind)以使其恢复原状,但这似乎很笨拙。有没有办法我可以使用类似!is.factor(x)的东西来忽略我的另一列?

df <- 
as.data.frame(matrix(c(1,3,3,2,2,5,3,2,3,6,3,2,4,7,3,2,5,4,5,2,6,3,5,2),
     ncol=6,
     dimnames=list(NULL, c("A.1", "B.1", "C.1", "B.2", "A.2", "C.2"))))

char = c("Apple", "banana", "cat", "rainbow")
df = cbind(char, df)

res <- as.data.frame(sapply(unique(names(df)), function(col) 
rowMeans(df[names(df) == col] )))

预期结果是:     res char A B C Apple 3.0 3 4.5 banana 3.5 6 4.5 cat 4.0 3 4.0 rainbow 2.0 2 2.0

错误是:

` Error in rowMeans(df[names(df) == col]) : 'x' must be numeric `

3 个答案:

答案 0 :(得分:0)

使用tidyverse,我想出了以下管道操作

##Recreate the data
df <- as.data.frame(matrix(c(1,3,3,2,2,5,3,2,3,6,3,2,4,7,3,2,5,4,5,2,6,3,5,2),
                   ncol=6,
                   dimnames=list(NULL, c("A.1", "B.1", "C.1", "B.2", "A.2", "C.2"))))

char = c("Apple", "banana", "cat", "rainbow")
df = cbind(char, df)

##Load tidyverse

library(tidyverse)

#Gather the columns with titles, extract the first letter, then summarize
 new_df <- df %>% gather(column_type, value, `A.1`:`C.2`) %>%
           mutate(initial = str_extract(column_type, "[A-Z]")) %>%
           group_by(initial, char) %>% 
           summarise(mean = mean(value)) %>%
           spread(initial, mean)

new_df

答案 1 :(得分:0)

要通过扩展现有资源来获得基本的R解决方案,

df <- 
  as.data.frame(matrix(c(1,3,3,2,2,5,3,2,3,6,3,2,4,7,3,2,5,4,5,2,6,3,5,2),
                       ncol=6,
                       dimnames=list(NULL, c("A.1", "B.1", "C.1", "B.2", "A.2", "C.2"))))

char = c("Apple", "banana", "cat", "rainbow")
df <- cbind(char, df)

names(df) <- gsub('.\\d', '', grep('[a-zA-Z]', names(df), value = TRUE)) ## removes the digit from your groups

res <-
  data.frame(
    factor = df$char,
    sapply(setdiff(unique(names(df)), 'char'), function(col)
      rowMeans(df[, names(df) == col]))
  )

> res
   factor   A B   C
1   Apple 3.0 3 4.5
2  banana 3.5 6 4.5
3     cat 4.0 3 4.0
4 rainbow 2.0 2 2.0

答案 2 :(得分:0)

在基数R中:您正在寻找以下内容:

aggregate(.~char, reshape(df, 2:ncol(df), idvar = 'char',dir = 'long'), mean)[-2]

     char   A B   C
1   Apple 3.0 3 4.5
2  banana 3.5 6 4.5
3     cat 4.0 3 4.0
4 rainbow 2.0 2 2.0

library(datatable)
melt(setDT(df),'char',patterns(A='^A',B='^B',C='^C'))[,-2][,lapply(.SD,mean),by=char]
        char   A B   C
1:   Apple 3.0 3 4.5
2:  banana 3.5 6 4.5
3:     cat 4.0 3 4.0
4: rainbow 2.0 2 2.0