使用R中的稀疏矩阵从向量中提取元素,而无需转换为密集矩阵

时间:2019-01-23 15:55:54

标签: r matrix sparse-matrix

我想从向量x1中提取第i列存在于稀疏矩阵中的所有元素。我需要删除所有稀疏元素,但结果应逐行显示在其自己的对象/列表/矩阵中。

给出:

> x1
 [1]  1  2  3  4  5  6  7  8  9 10
> sparse_mat
8 x 10 sparse Matrix of class "ngCMatrix"

[1,] | | | . . . . . . .
[2,] . | | | . . . . . .
[3,] . . | | | . . . . .
[4,] . . . | | | . . . .
[5,] . . . . | | | . . .
[6,] . . . . . | | | . .
[7,] . . . . . . | | | .
[8,] . . . . . . . | | |

所需结果:

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    2    3    4
[3,]    3    4    5
[4,]    4    5    6
[5,]    5    6    7
[6,]    6    7    8
[7,]    7    8    9
[8,]    8    9   10

带有注释的更完整示例

library(Matrix)
library(purrr)

x1 <- 1:10

create_seq_sparse <- function(n, len) {
  bandSparse(m = n, n = n - len + 1L, k = seq_len(len) - 1L)
}

sparse_mat <- create_seq_sparse(10, 3)
sparse_mat
#> 8 x 10 sparse Matrix of class "ngCMatrix"
#>                         
#> [1,] | | | . . . . . . .
#> [2,] . | | | . . . . . .
#> [3,] . . | | | . . . . .
#> [4,] . . . | | | . . . .
#> [5,] . . . . | | | . . .
#> [6,] . . . . . | | | . .
#> [7,] . . . . . . | | | .
#> [8,] . . . . . . . | | |

# If there's a better way to do this, please advise?
mat_x1_mult_sparse <- t(t(sparse_mat) * x1) 
mat_x1_mult_sparse
#> 8 x 10 sparse Matrix of class "dgCMatrix"
#>                          
#> [1,] 1 2 3 . . . . . .  .
#> [2,] . 2 3 4 . . . . .  .
#> [3,] . . 3 4 5 . . . .  .
#> [4,] . . . 4 5 6 . . .  .
#> [5,] . . . . 5 6 7 . .  .
#> [6,] . . . . . 6 7 8 .  .
#> [7,] . . . . . . 7 8 9  .
#> [8,] . . . . . . . 8 9 10

# This is nice, but can't use in conjunction with keep?
# mat_x1_mult_sparse[1, , drop = FALSE] 

# Desired results, but this approach I think I lose the advantages of the sparse matrix?
mat_x1_mult_sparse[1, ] %>% keep(~ .x != 0)
#> [1] 1 2 3
mat_x1_mult_sparse[2, ] %>% keep(~ .x != 0)
#> [1] 2 3 4
# etc...
mat_x1_mult_sparse[8, ] %>% keep(~ .x != 0)
#> [1]  8  9 10

2 个答案:

答案 0 :(得分:3)

一种选择是利用summary方法来获取不稀疏元素的索引

library(Matrix)
i1 <- summary(sparse_mat)
i2 <- as.matrix(i1[order(i1[,1]),]) # order by the row index
# multiply the sparse matrix by the replicated 'x1', extract elements
# with i2 index and convert it to n column matrix
matrix((sparse_mat * x1[col(sparse_mat)])[i2], ncol = 3, byrow = TRUE)
#.     [,1] [,2] [,3]
#[1,]    1    2    3
#[2,]    2    3    4
#[3,]    3    4    5
#[4,]    4    5    6
#[5,]    5    6    7
#[6,]    6    7    8
#[7,]    7    8    9
#[8,]    8    9   10

答案 1 :(得分:1)

一旦我发现您不想让矩阵稀疏,就删除了较早的答案。不过,我们的想法是利用矩阵的i插槽:

# convert to dgCMatrix since ngCMatrix can only be on/off
out = as(sparse_mat, 'dgCMatrix')

# subset to the "on" elements of sparse_mat, 
#   and replace with the column number. The column number is
#   not stored directly so we have to make it ourselves, basically
#   by looking for when the value in @i stays the same or goes down
out[sparse_mat] = c(1L, cumsum(diff(sparse_mat@i) <= 0) + 1L)
out
# 8 x 10 sparse Matrix of class "dgCMatrix"
#                          
# [1,] 1 2 3 . . . . . .  .
# [2,] . 2 3 4 . . . . .  .
# [3,] . . 3 4 5 . . . .  .
# [4,] . . . 4 5 6 . . .  .
# [5,] . . . . 5 6 7 . .  .
# [6,] . . . . . 6 7 8 .  .
# [7,] . . . . . . 7 8 9  .
# [8,] . . . . . . . 8 9 10

这应该非常高效,因为[的{​​{1}}方法应该很聪明,并且您的替换长度精确地是 所需的长度(没有浪费的元素)。