如何重塑数据以进行线性回归?

时间:2019-01-23 10:43:59

标签: python linear-regression

我正在尝试对数据进行线性回归。但是我的数据存在重塑问题。我收到此错误:

array=[1547977519 1547977513].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.

这是我的代码:

from sklearn.linear_model import LinearRegression

X=[1547977519, 1547977513]
Y=[1, 1]

#X = X.reshape(-1, 1)
print(X)
#Y = Y.reshape(-1, 1)
print(Y)
reg = LinearRegression().fit(X, X)
print(reg.score(X, Y))

我尝试添加.reshape,但无法正常工作。它给了我这个错误:

    X = X.reshape(-1, 1)
AttributeError: 'list' object has no attribute 'reshape'

1 个答案:

答案 0 :(得分:1)

您正在寻找的是numpy.array,它具有方法reshape

from numpy import array
>>> x = array([1547977519, 1547977513])
>>> x.reshape(-1,1)
array([[1547977519],
       [1547977513]])