我有一个这样的数据框:
head(Betula, 10)
year start Start_DayOfYear end End_DayOfYear duration DateMax Max_DayOfYear BetulaPollenMax SPI Jan.NAO Jan.AO
1 1997 <NA> NA <NA> NA NA <NA> NA NA NA -0.49 -0.46
2 1998 <NA> 143 <NA> 184 41 <NA> 146 42 361 0.39 -2.08
3 1999 <NA> 148 <NA> 188 40 <NA> 158 32 149 0.77 0.11
4 2000 <NA> 135 <NA> 197 62 <NA> 156 173 917 0.60 1.27
5 2001 <NA> 143 <NA> 175 32 <NA> 154 113 457 0.25 -0.96
Jan.SO Feb.NAO Feb.AO Feb.SO Mar.NAO Mar.AO Mar.SO Apr.NAO Apr.AO Apr.SO DecJanFebMarApr.NAO DecJanFebMar.NAO
1 0.5 1.70 1.89 1.7 1.46 1.09 -0.4 -1.02 0.32 -0.6 0.14 0.43
2 -2.7 -0.11 -0.18 -2.0 0.87 -0.25 -2.4 -0.68 -0.04 -1.4 0.27 0.51
3 1.8 0.29 0.48 1.0 0.23 -1.49 1.3 -0.95 0.28 1.4 0.39 0.73
4 0.7 1.70 1.08 1.7 0.77 -0.45 1.3 -0.03 -0.28 1.2 0.49 0.62
5 1.0 0.45 -0.62 1.7 -1.26 -1.69 0.9 0.00 0.91 0.2 -0.28 -0.35
DecJanFeb.NAO DecJan.NAO JanFebMarApr.NAO JanFebMar.NAO JanFeb.NAO FebMarApr.NAO FebMar.NAO MarApr.NAO
1 0.08 -0.73 0.41 0.89 0.61 0.71 1.58 0.22
2 0.38 0.63 0.12 0.38 0.14 0.03 0.38 0.10
3 0.89 1.19 0.09 0.43 0.53 -0.14 0.26 -0.36
4 0.57 0.01 0.76 1.02 1.15 0.81 1.24 0.37
5 -0.04 -0.29 -0.14 -0.19 0.35 -0.27 -0.41 -0.63
DecJanFebMarApr.AO DecJanFebMar.AO DecJanFeb.AO DecJan.AO JanFebMarApr.AO JanFebMar.AO JanFeb.AO FebMarApr.AO
1 0.55 0.61 0.45 -0.27 0.71 0.84 0.72 1.10
2 -0.24 -0.29 -0.30 -0.37 -0.64 -0.84 -1.13 -0.16
3 0.08 0.04 0.54 0.58 -0.16 -0.30 0.30 -0.24
4 -0.15 -0.11 0.00 -0.54 0.41 0.63 1.18 0.12
5 -0.74 -1.15 -0.97 -1.14 -0.59 -1.09 -0.79 -0.47
FebMar.AO MarApr.AO DecJanFebMarApr.SO DecJanFebMar.SO DecJanFeb.SO DecJan.SO JanFebMarApr.SO JanFebMar.SO
1 1.49 0.71 0.04 0.20 0.40 -0.25 0.30 0.60
2 -0.22 -0.15 -1.42 -1.43 -1.10 -0.65 -2.13 -2.37
3 -0.51 -0.61 1.38 1.38 1.40 1.60 1.38 1.37
4 0.32 -0.37 1.14 1.13 1.07 0.75 1.23 1.23
5 -1.16 -0.39 0.60 0.70 0.63 0.10 0.95 1.20
JanFeb.SO FebMarApr.SO FebMar.SO MarApr.SO TmaxAprI TminAprI TmeanAprI RainfallAprI HumidityAprI SunshineAprI
1 1.10 0.23 0.65 -0.50 3.27 -3.86 -0.44 0.82 76.3 3.45
2 -2.35 -1.93 -2.20 -1.90 4.52 -3.28 -0.15 0.12 73.5 7.12
3 1.40 1.23 1.15 1.35 4.11 -3.86 -0.34 1.32 78.4 4.85
4 1.20 1.40 1.50 1.25 6.11 -1.31 1.93 0.80 71.9 4.20
5 1.35 0.93 1.30 0.55 1.46 -2.37 -1.04 2.83 84.4 1.21
CloudAprI WindAprI SeeLevelPressureAprI TmaxAprII TminAprII TmeanAprII RainfallAprII HumidityAprII
1 6.30 5.26 1008.63 12.12 2.11 6.17 0.23 76.5
2 3.93 3.86 1022.39 5.57 -0.44 1.82 0.83 77.9
3 5.02 3.23 1007.09 0.20 -6.36 -3.23 2.63 82.5
4 6.15 5.13 1012.21 2.74 -4.88 -2.35 0.34 76.0
5 7.50 3.90 1009.50 6.75 -3.22 1.16 0.32 71.5
SunshineAprII CloudAprII WindAprII SeeLevelPressureAprII TmaxAprIII TminAprIII TmeanAprIII RainfallAprIII
1 3.12 6.53 5.19 1024.31 7.35 0.33 3.37 0.33
2 2.41 6.85 3.70 1012.01 6.34 0.76 2.69 2.01
3 4.99 5.87 6.23 1019.66 8.65 0.73 4.23 0.70
4 6.63 5.17 5.84 1022.62 5.84 -1.81 2.02 0.00
5 6.11 4.82 3.92 1018.81 8.47 1.02 4.17 1.09
HumidityAprIII SunshineAprIII CloudAprIII WindAprIII SeeLevelPressureAprIII TmaxDecI TminDecI TmeanDecI
1 75.0 3.73 6.40 4.08 1009.91 -0.90 -5.88 -3.67
2 83.5 1.52 7.31 4.66 1008.33 5.33 0.01 2.46
3 73.4 6.62 5.12 3.16 1017.01 -0.24 -6.93 -3.64
4 69.0 8.80 4.80 4.99 1021.18 4.67 1.86 2.79
5 72.7 5.33 5.41 4.27 1005.48 3.69 -1.43 1.65
RainfallDecI HumidityDecI SunshineDecI CloudDecI WindDecI SeeLevelPressureDecI TmaxDecII TminDecII TmeanDecII
1 0.12 77.3 0.22 5.08 3.49 1003.15 7.99 0.77 4.10
2 1.10 73.5 0.04 6.29 5.21 999.94 0.24 -4.74 -2.67
3 2.41 82.3 0.00 6.70 4.92 998.64 1.22 -5.90 -2.05
4 3.13 88.1 0.00 7.97 4.00 997.82 2.76 -3.89 -0.54
5 1.60 79.1 0.07 5.44 5.76 996.35 10.82 4.36 6.90
RainfallDecII HumidityDecII SunshineDecII CloudDecII WindDecII SeeLevelPressureDecII TmaxDecIII TminDecIII
1 1.90 71.3 0 4.96 5.55 1007.16 4.78 -2.12
2 4.34 82.2 0 7.03 6.06 998.02 2.07 -4.60
3 1.94 78.6 0 6.53 5.82 1008.33 2.09 -2.48
4 1.45 77.2 0 6.57 5.26 1005.11 -1.49 -8.37
5 1.15 66.6 0 5.74 5.47 1030.02 1.40 -7.34
TmeanDecIII RainfallDecIII HumidityDecIII SunshineDecIII CloudDecIII WindDecIII SeeLevelPressureDecIII TmaxFebI
1 1.15 3.96 82.36 0 6.01 4.02 991.60 -0.23
2 -0.51 4.10 81.18 0 6.67 3.91 986.52 0.79
3 -0.61 1.97 81.27 0 6.21 5.53 982.13 2.19
4 -5.28 1.26 79.64 0 6.11 4.22 1019.63 3.27
5 -3.45 1.19 82.18 0 6.20 4.77 1015.53 2.42
TminFebI TmeanFebI RainfallFebI HumidityFebI SunshineFebI CloudFebI WindFebI SeeLevelPressureFebI TmaxFebII
1 -6.67 -3.57 0.84 84.3 1.11 6.81 5.35 990.51 2.97
2 -7.79 -4.49 2.31 72.2 1.88 4.73 4.53 990.39 3.31
3 -4.14 -1.77 0.42 73.3 1.29 6.02 5.57 1007.67 1.55
4 -2.48 0.04 2.28 77.0 0.46 6.84 4.29 982.97 -1.24
5 -3.52 -0.74 1.98 81.5 0.76 5.78 4.93 1008.29 6.71
TminFebII TmeanFebII RainfallFebII HumidityFebII SunshineFebII CloudFebII WindFebII SeeLevelPressureFebII
1 -2.31 -0.10 1.44 82.2 1.07 6.45 4.42 980.59
2 -4.85 -0.99 3.84 75.0 2.54 5.91 5.05 999.98
3 -5.76 -2.44 2.89 75.3 0.40 6.95 5.82 990.44
4 -8.47 -4.65 3.33 83.1 0.63 6.55 4.95 1000.10
5 -0.25 3.01 1.38 66.1 1.16 6.18 6.28 1001.46
TmaxFebIII TminFebIII TmeanFebIII RainfallFebIII HumidityFebIII SunshineFebIII CloudFebIII WindFebIII
1 0.05 -6.01 -3.35 4.60 83.50 1.29 6.58 4.71
2 -0.45 -7.43 -4.51 2.93 78.38 1.00 6.91 5.99
3 2.13 -4.51 -1.21 2.90 79.38 2.51 5.76 5.46
4 0.59 -3.79 -1.92 5.94 88.33 1.40 6.86 6.70
5 -2.68 -7.23 -5.05 1.39 83.88 1.13 7.41 5.69
SeeLevelPressureFebIII TmaxJanI TminJanI TmeanJanI RainfallJanI HumidityJanI SunshineJanI CloudJanI WindJanI
1 980.25 0.38 -5.57 -3.36 0.01 82.9 0.27 3.45 2.97
2 997.71 4.29 -0.03 2.08 3.70 82.9 0.00 7.39 5.01
3 988.45 1.02 -4.47 -1.87 2.22 82.3 0.00 6.94 4.29
4 987.21 0.04 -6.28 -3.03 4.99 85.8 0.00 5.84 4.75
5 1023.84 -0.33 -5.11 -3.17 0.66 81.2 0.00 7.08 3.88
SeeLevelPressureJanI TmaxJanII TminJanII TmeanJanII RainfallJanII HumidityJanII SunshineJanII CloudJanII
1 1023.71 0.09 -6.48 -2.50 4.29 86.5 0.01 7.23
2 984.57 -0.34 -6.49 -3.61 2.74 80.2 0.23 6.99
3 1004.06 0.32 -5.59 -3.03 5.28 83.3 0.00 6.68
4 983.42 8.38 1.46 4.97 0.64 69.3 0.10 6.13
5 1010.31 7.35 3.00 5.09 1.27 66.3 0.03 6.19
WindJanII SeeLevelPressureJanII TmaxJanIII TminJanIII TmeanJanIII RainfallJanIII HumidityJanIII SunshineJanIII
1 5.42 998.88 5.66 -2.39 1.97 1.03 74.27 0.65
2 6.38 1011.44 3.84 -3.32 -0.37 0.70 73.55 0.55
3 6.24 980.15 4.33 -5.19 -0.59 2.23 76.64 0.69
4 6.44 1019.41 4.09 -2.67 0.05 2.18 71.73 0.42
5 6.74 1006.10 4.43 -0.86 1.58 1.91 80.09 0.20
CloudJanIII WindJanIII SeeLevelPressureJanIII TmaxMarI TminMarI TmeanMarI RainfallMarI HumidityMarI
1 6.47 7.59 1004.59 2.83 -3.60 -0.72 2.14 79.9
2 5.25 4.72 1019.95 -5.31 -12.52 -9.52 2.28 72.6
3 5.34 4.65 1001.66 -0.70 -6.67 -4.47 1.39 81.0
4 5.85 4.83 1007.23 0.10 -7.91 -3.98 2.36 80.2
5 6.53 3.63 992.53 -0.38 -4.59 -2.27 3.00 86.4
SunshineMarI CloudMarI WindMarI SeeLevelPressureMarI TmaxMarII TminMarII TmeanMarII RainfallMarII HumidityMarII
1 0.85 6.77 6.64 986.96 -1.48 -8.43 -5.58 1.09 81.0
2 2.92 5.91 4.68 1013.17 6.53 -1.81 2.56 0.43 65.5
3 2.40 5.71 4.02 1014.62 0.53 -5.17 -2.90 5.20 82.8
4 0.91 7.02 5.87 1006.64 5.32 -0.94 1.23 1.11 74.4
5 0.19 7.82 4.49 999.35 1.60 -4.29 -1.89 0.95 79.3
SunshineMarII CloudMarII WindMarII SeeLevelPressureMarII TmaxMarIII TminMarIII TmeanMarIII RainfallMarIII
1 2.12 5.51 3.93 1021.57 3.88 -1.95 0.55 1.42
2 2.25 6.29 6.11 1008.31 3.95 -2.46 -0.15 1.30
3 1.00 6.61 5.77 1006.63 -0.68 -6.60 -4.07 0.70
4 2.16 6.61 6.45 1003.23 5.49 -0.68 1.65 1.58
5 4.07 5.21 3.14 1017.24 -0.66 -7.21 -4.00 1.37
HumidityMarIII SunshineMarIII CloudMarIII WindMarIII SeeLevelPressureMarIII
1 80.45 2.80 6.13 4.03 995.31
2 72.09 3.98 5.99 5.14 1000.32
3 78.73 2.34 6.46 3.81 1005.67
4 74.64 2.85 6.54 6.34 1013.45
5 79.45 4.71 5.65 4.95 1010.47
[ reached 'max' / getOption("max.print") -- omitted 5 rows ]
我想一次对所有列进行正常性测试。我尝试过
apply(x, shapiro.test)
Betula_shapiro <-申请(Betula,shapiro.test)
FUN(X [[i]],...)中的错误:is.numeric(x)不为真
,它没有用。我也尝试过:
Betula <-apply(Betula [which(sapply(Betula,is.numeric))],2,shapiro.test)
FUN(newX [,i],...)中的错误:所有'x'值都相同
f <-function(x){if(diff(range(x))== 0)list()else shapiro.test(x)}
Betula <-apply(Betula [which(sapply(Betula,is.numeric))],2,f)
if(diff(range(x))== 0)list()else shapiro.test(x)错误: 缺少需要TRUE / FALSE的值
所以我做到了:
Betula_numerics_only <-Betula [which(sapply(Betula,is.numeric))]
选择至少3个不丢失值的列并对其应用shapiro.test
Betula_numerics_only_filled_columns <-Betula_numerics_only [which(apply(Betula_numerics_only,2,function(f)sum(!is.na(f))> = 3))]
Betula_shapiro <-apply(Betula_numerics_only_filled_columns,2,shapiro.test)
FUN(newX [,i],...)中的错误:所有'x'值都相同
您能帮我解决这个问题吗?
答案 0 :(得分:0)
自从我在评论中谈论可读性以来,我觉得我也应该提供更具可读性的内容作为答案。
让我们创建一些伪数据:
data_test <- data.frame(matrix(rnorm(100, 10, 1), ncol = 5, byrow = T), stringsAsFactors = F)
让我们将shapiro.test应用于每一列
apply(data_test, 2, shapiro.test)
如果有非数字列:
让我们添加一个用于测试目的的哑字符列
data_test$non_numeric <- sample(c("hello", "hi", "good morning"), NROW(data_test), replace = T)
然后尝试再次应用测试
apply(data_test, 2, shapiro.test)
其结果是:
> apply(data_test, 2, shapiro.test)
Error: is.numeric(x) is not TRUE
为解决此问题,我们使用sapply仅选择数字列:
data_test[which(sapply(data_test, is.numeric))]
并将其与apply结合起来
apply(data_test[which(sapply(data_test, is.numeric))], 2, shapiro.test)
删除所有不适用的列:
data_test_numerics_only <- data_test[which(sapply(data_test, is.numeric))]
选择至少3个不缺失值的列,然后对它们应用shapiro.test:
data_test_numerics_only_filled_colums = data_test_numerics_only[which(apply(data_test_numerics_only, 2, function(f) sum(!is.na(f)) >= 3))]
apply(data_test_numerics_only_filled_colums, 2, shapiro.test)
我们将使它运行,让我们再试一次:)
删除非数字列
Betula_numerics <- Betula[which(sapply(Betula, is.numeric))]
删除少于3个值的列
Betula_numerics_filled <- Betula_numerics[which(apply(Betula_numerics, 2, function(f) sum(!is.na(f)) >= 3))]
删除方差为零的列
Betula_numerics_filled_not_constant <- Betula_numerics_filled [apply(Betula_numerics_filled , 2, function(f) var(f, na.rm = T) != 0)]
Shapiro.test并希望最好:)
apply(Betula_numerics_filled_not_constant, 2, shapiro.test)