在业余时间,我喜欢编写定理。
const PI = 3.141592653589793; // Math.PI
function CalculatePi(total = 0, x = 1, addSubBool = false) {
if (addSubBool) {
total -= (4 / x)
console.log(`${total}\tDifference: ${PI - total}`);
} else {
total += (4 / x)
console.log(`${total}\tDifference: ${total - PI}`);
}
if (total !== PI) {
setTimeout(function() {
CalculatePi(total, x + 2, !addSubBool);
}, 100);
}
}
CalculatePi();
这是一个计算pi的递归调用。我基于this link
我的问题是,如何计算编程极限?此通话将转到无穷大。
那么当x接近无穷大时,计算器或其他编程语言如何计算极限?我会为x设置最大值吗?
答案 0 :(得分:2)
下面,我们使用loop
和recur
来使您的函数无限重复。而且,我不再使用setTimeout
,而是尽可能快地重复执行,而是每隔1000 x
-
const recur = (...values) =>
({ recur, values })
const loop = f =>
{ let acc = f ()
while (acc && acc.recur === recur)
acc = f (...acc.values)
return acc
}
const calculatePi = (limit = Infinity) =>
loop // loop our function ...
( (total = 0, x = 1, addSubBool = false) =>
{ if (x > limit) // stop condition
return total
if (x % 1e3 === 1) // display progress as we go
console.log(x, total, total - Math.PI)
if (total === Math.PI) // solution found
return total
if (addSubBool)
return recur // recur with ...
( total - 4 / x // next total
, x + 2 // next x
, false // next addSubBool
)
else
return recur // recur with ...
( total + 4 / x // next total
, x + 2 // next x
, true // next addSubBool
)
}
)
console.log(calculatePi(1e7))
如您所见,此方法需要很长时间才能收敛到答案。即使经过一千万(10M)x,我们仍然只计算了6个精度点-
x total diff
...
9997001 3.1415924535297624 -2.0006003076389334e-7
9998001 3.1415924535497695 -2.0004002365681117e-7
9999001 3.141592453569776 -2.0002001699381822e-7
一种不同的方法将precision
作为calculatePi
的输入。我们将继续进行计算,直到达到特定的精度,而不是通过任意的x
进行限制。出于演示目的,该函数还返回x
,因此我们可以看到x
必须达到多少精度-
const calculatePi = (precision = 1e5) =>
loop
( (total = 0, x = 1, addSubBool = false) =>
{ if (total * precision >> 0 === Math.PI * precision >> 0)
return [ total, x ]
if (addSubBool)
return recur
( total - 4 / x
, x + 2
, false
)
else
return recur
( total + 4 / x
, x + 2
, true
)
}
)
如您所见,x
超过3,700万,达到7位小数-
console .log
( calculatePi (1e2)
// [ 3.14999586659347, 239 ]
, calculatePi (1e3)
// [ 3.141000236580159, 3377 ]
, calculatePi (1e4)
// [ 3.1415000095284658, 21589 ]
, calculatePi (1e5)
// [ 3.141599999994786, 272243 ]
, calculatePi (1e7)
// [ 3.1415926000000005, 37320609 ]
)
展开下面的代码片段,以在浏览器中验证结果-
const recur = (...values) =>
({ recur, values })
const loop = f =>
{ let acc = f ()
while (acc && acc.recur === recur)
acc = f (...acc.values)
return acc
}
const calculatePi = (precision = 1e5) =>
loop
( (total = 0, x = 1, addSubBool = false) =>
{ if (total * precision >> 0 === Math.PI * precision >> 0)
return [ total, x ]
if (addSubBool)
return recur
( total - 4 / x
, x + 2
, false
)
else
return recur
( total + 4 / x
, x + 2
, true
)
}
)
console .log
( calculatePi (1e2)
// [ 3.14999586659347, 239 ]
, calculatePi (1e3)
// [ 3.141000236580159, 3377 ]
, calculatePi (1e4)
// [ 3.1415000095284658, 21589 ]
, calculatePi (1e5)
// [ 3.141599999994786, 272243 ]
, calculatePi (1e7)
// [ 3.1415926000000005, 37320609 ]
)
最后,在计算pi时检查Math.PI
并没有多大意义。我以为整个目标是计算一个我们假装不知道的数字。为此,我们从一些guess
开始,然后测量它与total
之间的差异。如果猜测在指定的公差范围内,则返回猜测-
const calculatePi = (precision = 1e5) =>
loop
// guess starts at 1
( (guess = 1, total = 0, x = 1, addSubBool = false) =>
{ if (Math .abs (guess - total) * precision < 1)
return [ guess, x ]
if (addSubBool)
return recur // recur with ...
( total // next guess
, total - 4 / x // next total
, x + 2 // next x
, false // next addSubBool
)
else
return recur // recur with ...
( total // next guess
, total + 4 / x // next total
, x + 2 // next x
, true // next addSubBool
)
}
)
我们可以看到它按预期工作。诚然,我对输入精度和计算所需的x
之间的相关性感到惊讶-
console .log
( calculatePi (1e2)
// [ 3.136592684838816, 403 ]
, calculatePi (1e3)
// [ 3.1410926536210413, 4003 ]
, calculatePi (1e4)
// [ 3.1415426535898248, 40003 ]
, calculatePi (1e5)
// [ 3.1415876535897618, 400003 ]
, calculatePi (1e7)
// [ 3.141592603589817, 40000003 ]
)
展开下面的代码片段,以在浏览器中验证结果-
const recur = (...values) =>
({ recur, values })
const loop = f =>
{ let acc = f ()
while (acc && acc.recur === recur)
acc = f (...acc.values)
return acc
}
const calculatePi = (precision = 1e5) =>
loop
// guess starts at 1
( (guess = 1, total = 0, x = 1, addSubBool = false) =>
{ if (Math .abs (guess - total) * precision < 1)
return [ guess, x ]
if (addSubBool)
return recur // recur with ...
( total // next guess
, total - 4 / x // next total
, x + 2 // next x
, false // next addSubBool
)
else
return recur // recur with ...
( total // next guess
, total + 4 / x // next total
, x + 2 // next x
, true // next addSubBool
)
}
)
console .log
( calculatePi (1e2)
// [ 3.136592684838816, 403 ]
, calculatePi (1e3)
// [ 3.1410926536210413, 4003 ]
, calculatePi (1e4)
// [ 3.1415426535898248, 40003 ]
, calculatePi (1e5)
// [ 3.1415876535897618, 400003 ]
, calculatePi (1e7)
// [ 3.141592603589817, 40000003 ]
)
答案 1 :(得分:1)
就个人而言,我将定义一个合适的公差,然后比较当前值和最后一个值之间的差异。如果差异低于公差,请停止计算,并且您知道结果可以精确到正负公差。
您也可以继续进行计算,直到获得与可能相同的两个值为止,这意味着您将要存储结果的数据类型的精度已达到极限,并且任何进一步的计算都是没有意义的。