我有许多数据帧,其中包含一个因子,希望将其扩展为许多二进制等价物(一种热编码)。但是,在每个数据帧中,并非所有可能的因素都存在,但是我确实知道所有可能的因素是什么(有70个这样的因素)。我想将所有可能的二进制虚拟变量添加到每个数据帧。
从下面的代码中,我可以在每个数据帧中创建虚拟对象,但不能创建所有可能的虚拟对象。例如,set1.df没有任何人属于“ E”或“ F”类别,而set2.df没有任何人属于“ D”类别。需要的是set1.df中的其他列set1.dfE set1.dfF均为0,set2.df中的列set2.dfD均为零。在创建虚拟变量之前,我无法rbind set1.df和set2.df,因为在绑定之前我需要使用二进制变量对每个数据帧进行一些处理。再次重申一下,我知道事前数据中可能存在哪些级别,例如“ A”至“ F”。
library(dummies)
person_id <- c(1,2,3,4,5,6,7,8,9,10)
person_cat <- c("A","B","C","A","B","C","D","A","A","A")
set1.df <- data.frame(person_id,person_cat)
person_id <- c(11,12,13,14,15,16,17,18,19,20)
person_cat <- c("A","B","C","A","B","C","E","E","F","A")
set2.df <- data.frame(person_id,person_cat)
dummies1 <- dummy(set1.df[,2])
dummies2 <- dummy(set2.df[,2])
dummies1
dummies2
预期输出为:
> dummies1
set1.dfA set1.dfB set1.dfC set1.dfD set1.dfE set1.dfF
[1,] 1 0 0 0 0 0
[2,] 0 1 0 0 0 0
[3,] 0 0 1 0 0 0
[4,] 1 0 0 0 0 0
[5,] 0 1 0 0 0 0
[6,] 0 0 1 0 0 0
[7,] 0 0 0 1 0 0
[8,] 1 0 0 0 0 0
[9,] 1 0 0 0 0 0
[10,] 1 0 0 0 0 0
> dummies2
set2.dfA set2.dfB set2.dfC set2.df$D set2.dfE set2.dfF
[1,] 1 0 0 0 0 0
[2,] 0 1 0 0 0 0
[3,] 0 0 1 0 0 0
[4,] 1 0 0 0 0 0
[5,] 0 1 0 0 0 0
[6,] 0 0 1 0 0 0
[7,] 0 0 0 0 1 0
[8,] 0 0 0 0 1 0
[9,] 0 0 0 0 0 1
[10,] 1 0 0 0 0 0
答案 0 :(得分:0)
这是一种解决方案:
levels <- c('A', 'B', 'C', 'D', 'E', 'F')
data <- data.frame(matrix(NA, nrow = length(person_id), ncol = length(levels)))
names(data) <- levels
for (i in 1:nrow(data)) {
for (j in 1:length(data)){
data[i, j] <- ifelse(set1.df[i, 2] == names(data)[j], 1, 0)
}
}
您应该创建一个空的数据框,其行数与ID相同,列数与set1.df中的级别相同。然后,使用循环来评估每一列中的person_cat。仅当person_cat等于列名(category_level)时,单元格的值才为1。
答案 1 :(得分:0)
library(dummies)
person_id <- c(1,2,3,4,5,6,7,8,9,10)
person_cat <- c("A","B","C","A","B","C","D","A","A","A")
person_cat < -factor(person_cat,levels=c("A","B","C","D","E","F"))
set1.df <- data.frame(person_id,person_cat)
person_id <- c(11,12,13,14,15,16,17,18,19,20)
person_cat <- c("A","B","C","A","B","C","E","E","F","A")
person_cat <- factor(person_cat,levels=c("A","B","C","D","E","F"))
set2.df <- data.frame(person_id,person_cat)
dummies1 <- dummy(set1.df[,2],drop=FALSE)
dummies2 <- dummy(set2.df[,2],drop=FALSE)
dummies1
dummies2