访问时出现错误
{ "error": "Generic conv implementation does not support grouped convolutions for now.\n\t [[{{node model_1/conv2d_1/Conv2D}}]]" }
我将模型转换为TF服务器
import tensorflow as tf
tf.keras.backend.set_learning_phase(0)
model = tf.keras.models.load_model(r'model.h5')
export_path = 'my_image_classifier/1'
with tf.keras.backend.get_session() as sess:
tf.saved_model.simple_save(
sess,
export_path,
inputs={'input_image': model.input},
outputs={t.name: t for t in model.outputs})
我该怎么办?我需要服务器上的模型
系统Ubuntu 18.04
TF服务器1.12(Docker)
Keras 1.2.4
答案 0 :(得分:0)
降级TnesorFlow 1.13.1。
答案 1 :(得分:0)
var TransactionList = new List<int>();
for (int i = 0; i < 59; i++)
{
TransactionList.Add(0);
}
// var index = new Random().Next(0, 59);
// Below will work for dynamic length of list.
var index = new Random().Next(0, TransactionList.Count);
TransactionList[index] = 5;
主要是要包括
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def
from tensorflow.keras import backend as K
import tensorflow as tf
export_path = 'model'
sess = tf.Session()
K.set_session(sess)
K.set_learning_phase(0)
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = tf.keras.models.model_from_json(loaded_model_json)
model.load_weights('01.h5')
model.summary()
builder = saved_model_builder.SavedModelBuilder(export_path)
signature = predict_signature_def(inputs={'input_image': model.get_layer(name='the_input').input},
outputs={'out': model.get_layer(name='the_output').output})
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map={'predict': signature},
strip_default_attrs=True)
builder.save()