我正在尝试为一组具有很多约束的二进制变量计算最佳答案。 我想为约束设置优先级。 例如)约束1、2、3的优先级为100(最高),约束4、5、6的优先级为1(最低)
我目前正在使用纸浆线性编程和cbc求解器来解决生产计划问题。
我的一小部分数据看起来像这样。
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
a v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
b v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
c v21 v22 v23 v24 v25 v26 v27 v28 v29 v30
v_list =
[[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10],
[v11, v12, v13, v14, v15, v16, v17, v18, v19, v20],
[v21, v22, v23, v24, v25, v26, v27, v28, v29, v30]]
n_rows = v_list.shape[0]
n_columns = v_list.shape[1]
每个变量可能是-1、0、1
我设置的约束如下所示。
m = LpProblem()
# constraint 1, 2 = find absolute value of each variables
m += vxx <= t
m += -vxx <= t
# constraint 3 = sum of each row must be equal to or below 2
for r_index in range(n_rows):
m += lpSum(v_list[r_index, :]) <= 2
# constraint 4 = sum of rows a and b must be equal to or below 2
m += lpSum(v_list[[0, 1], :]) <= 2
# constraint 5 = sum of all rows must be equal to or below 2
for c_index in n_columns:
m += lpSum(v_list[:, c_index]) <= 2
# constraint 6 = sum of each consecutive value must be equal to or below 1
m += lpSum(v(t) + v(t+1)) <= 1
目标是最小化2 *行(a)+ 2 *行(b)+ 4 *行(c)
m += lpSum(v_list)
在短时限内求解模型且LpStatus为0(未求解)时, 可以完全满足具有最高优先级的约束,而仅部分满足其他约束。
ex)约束满足1 2 3 4但5 6是部分约束。
答案 0 :(得分:0)
在约束上设置优先级的一种方法是让它们受到一定程度的违反,然后在目标函数中惩罚违反约束的程度。
例如,在约束1中,您可能有m += vxx <= t + slack_1
。其中slack_1
是线性变量,然后将其与目标函数中的适当权重相乘。通过设置每个违反约束的权重,可以定义这些约束的重要性-但是,这不能保证在求解器运行期间满足约束的顺序。