fn1 = pd.DataFrame([['A', 'NaN', 'NaN', 9, 6], ['B', 'NaN', 2, 'NaN', 7], ['C', 3, 2, 'NaN', 10], ['D', 'NaN', 7, 'NaN', 'NaN'], ['E', 'NaN', 'NaN', 3, 3], ['F', 'NaN', 'NaN', 7,'NaN']], columns = ['Symbol', 'Condition1','Condition2', 'Condition3', 'Condition4'])
fn1.set_index('Symbol', inplace=True)
Condition1 Condition2 Condition3 Condition4
Symbol
A NaN NaN 9 6
B NaN 2 NaN 7
C 3 2 NaN 10
D NaN 7 NaN NaN
E NaN NaN 3 3
F NaN NaN 7 NaN
我目前正在使用类似于上面链接的Pandas DataFrame。我正在尝试逐列替换与该行关联的'Symbol'而不是'NaN'的值,然后折叠每列(或写入新的DataFrame),以便每列都是该'Symbol'的列表出现在每个“条件”中,如期望的输出所示:
我已经能够将每种情况下出现的“符号”放入列表列表中(见下文),但希望保持相同的列名,并且将它们添加到不断增长的新DataFrame时遇到了麻烦,因为长度是可变的,我正在遍历各列。
ls2 = []
for col in fn1.columns:
fn2 = fn1[fn1[col] > 0]
ls2.append(list(fn2.index))
其中fn1是看起来像第一张图片的DataFrame,我已将“符号”列作为索引。
在此先感谢您的帮助。
答案 0 :(得分:0)
您可以将符号映射到每一列,然后获取一组非空值。
df = fn1.apply(lambda x: x.map(fn1['Symbol'].to_dict()))
condition_symbols = {col:sorted(list(set(fn1_symbols[col].dropna()))) for col in fn1.columns[1:]}
这将为您提供字典:
{'Condition1': ['B', 'D'],
'Condition2': ['C', 'H'],
'Condition3': ['D', 'H', 'J'],
'Condition4': ['D', 'G', 'H', 'K']}
我知道您要一个数据框,但是由于每个列表的长度不同,因此将其放入数据框是没有意义的。如果您想要一个Dataframe,则可以运行以下代码:
pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in condition_symbols.items() ]))
这将为您提供以下输出:
Condition1 Condition2 Condition3 Condition4
0 B C D D
1 D H H G
2 NaN NaN J H
3 NaN NaN NaN K
答案 1 :(得分:0)
另一个答案将是切片,如下所示(注释中的解释):
import numpy as np
import pandas as pd
df = pd.DataFrame.from_dict({
"Symbol": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"],
"Condition1": [1, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan, 8, 12],
"Condition2": [np.nan, 2, 2, 7, np.nan, np.nan, 5, 11, 14, np.nan, np.nan],
}
)
new_df = pd.concat(
[
df["Symbol"][df[column].notnull()].reset_index(drop=True) # get columns without null and ignore the index (as your output suggests)
for column in list(df)[1:] # Iterate over all columns except "Symbols"
],
axis=1, # Column-wise concatenation
)
# Rename columns
new_df.columns = list(df)[1:]
# You can leave NaNs or replace them with empty string, your choice
new_df.fillna("", inplace=True)
此操作的输出将是:
Condition1 Condition2
0 a b
1 c c
2 g d
3 j g
4 k h
5 i
如果您需要进一步的说明,请在下面发表评论。