下图显示了我想做什么:
rpart
为某些数据集种植一棵树这是我写的一些代码:
library(rpart)
library(rattle)
data <- kyphosis
fit <- rpart(Age ~ Number + Start, data = kyphosis)
fancyRpartPlot(fit)
nodeNumbers <- as.numeric(rownames(fit$frame))
paths <- path.rpart(fit, nodeNumbers)
for(i in 1:length(nodeNumbers)){
nodeNumber <- nodeNumbers[i]
data[,paste0('gp', nodeNumber)] <- NA
path <- paths[[i]]
if(length(path) == 1) # i.e. we're at the root
data[,paste0('gp', nodeNumber)] <- 1 else
print('help')
}
data
是否有一个包装可以满足我的需要?我唯一想到的方法就是为paths
对象添加一些正则表达式魔术。我的猜测/希望是这样做有更简单的方法。
答案 0 :(得分:1)
有没有可以做我需要的包裹?
AFAIK,否,但只能在rpart
4.1.13版中使用
# function to get the binary matrix OP wants given the leaf index
get_nodes <- function(object, where){
rn <- row.names(object$frame)
edges <- descendants(as.numeric(rn))
o <- t(edges)[where, , drop = FALSE]
colnames(o) <- paste0("GP", rn)
o
}
environment(get_nodes) <- environment(rpart)
# use function
nodes <- get_nodes(fit, fit$where)
head(nodes, 9)
#R GP1 GP2 GP3 GP6 GP7 GP14 GP15
#R [1,] TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#R [2,] TRUE FALSE TRUE FALSE TRUE FALSE TRUE
#R [3,] TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#R [4,] TRUE TRUE FALSE FALSE FALSE FALSE FALSE
#R [5,] TRUE FALSE TRUE FALSE TRUE FALSE TRUE
#R [6,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#R [7,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#R [8,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#R [9,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
# compare with
head(data, 9)
#R Kyphosis Age Number Start
#R 1 absent 71 3 5
#R 2 absent 158 3 14
#R 3 present 128 4 5
#R 4 absent 2 5 1
#R 5 absent 1 4 15
#R 6 absent 1 2 16
#R 7 absent 61 2 17
#R 8 absent 37 3 16
#R 9 absent 113 2 16
这是适合模型的完整代码,创建了一个可以获取新数据集的末页叶子的函数,并创建并使用了上面的函数
# do as OP
library(rpart)
library(rattle)
data <- kyphosis
fit <- rpart(Age ~ Number + Start, data = kyphosis)
fancyRpartPlot(fit)
# function that gives us the leaf index
get_where <- function(object, newdata, na.action = na.pass){
if (is.null(attr(newdata, "terms"))) {
Terms <- delete.response(object$terms)
newdata <- model.frame(Terms, newdata, na.action = na.action,
xlev = attr(object, "xlevels"))
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, newdata, TRUE)
}
pred.rpart(object, rpart.matrix(newdata))
}
environment(get_where) <- environment(rpart)
# check that we get the correct value
where <- get_where(fit, data)
stopifnot(isTRUE(all.equal(
fit$frame$yval[where], unname(predict(fit, newdata = data)))))
# function to get the binary matrix OP wants given the leaf index
get_nodes <- function(object, where){
rn <- row.names(object$frame)
edges <- descendants(as.numeric(rn))
o <- t(edges)[where, , drop = FALSE]
colnames(o) <- paste0("GP", rn)
o
}
environment(get_nodes) <- environment(rpart)
# use function
nodes <- get_nodes(fit, where)
head(nodes, 9)
#R GP1 GP2 GP3 GP6 GP7 GP14 GP15
#R [1,] TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#R [2,] TRUE FALSE TRUE FALSE TRUE FALSE TRUE
#R [3,] TRUE FALSE TRUE FALSE TRUE TRUE FALSE
#R [4,] TRUE TRUE FALSE FALSE FALSE FALSE FALSE
#R [5,] TRUE FALSE TRUE FALSE TRUE FALSE TRUE
#R [6,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#R [7,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#R [8,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#R [9,] TRUE FALSE TRUE TRUE FALSE FALSE FALSE
# compare with
head(data, 9)
#R Kyphosis Age Number Start
#R 1 absent 71 3 5
#R 2 absent 158 3 14
#R 3 present 128 4 5
#R 4 absent 2 5 1
#R 5 absent 1 4 15
#R 6 absent 1 2 16
#R 7 absent 61 2 17
#R 8 absent 37 3 16
#R 9 absent 113 2 16
代码来自rpart:::predict.rpart
和rpart::path.rpart
。当然,您可以根据需要合并get_where
和get_nodes
函数。