I have problem with training my code using Stochastic Gradient Descent and MNIST database.
from sklearn.datasets import fetch_mldata
from sklearn.linear_model import SGDClassifier
mnist = fetch_mldata('MNIST original')
X, y = mnist["data"], mnist["target"]
some_digit = X[36000]
some_digit_image = some_digit.reshape(28, 28)
X_train, X_train, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
y_train_5 = (y_train == 5)
y_test_5 = (y_test == 5)
sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)
Error at the end of process (in my opinion the last verse of code is bad):
ValueError: Found input variables with inconsistent numbers of samples: [10000, 60000]
答案 0 :(得分:1)
这是您的错字,您两次分配给X_train
:
X_train, X_train, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
正确的答案是:
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
顺便说一句。 fetch_mldata
即将被弃用,最好使用:
from sklearn.datasets import fetch_openml
X, y = fetch_openml("mnist_784", version=1, return_X_y=True)
答案 1 :(得分:0)
我建议在训练和测试数据集之间使用分层划分,因为某些类在训练中可能会歪曲表示形式。
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)