以下查询在PostgreSQL 11.1中花费超过7分钟:
SELECT
'2019-01-19' as date,
'2019-01-19'::date - generate_series(first_observed, last_observed, interval '1 day')::date as days_to_date,
ROUND(AVG(price)) as price,
area_id
FROM
table_example
GROUP BY
days_to_date, area_id;
table_example
大约有 1500万行。
有什么方法可以优化它?我已经添加了以下索引:
CREATE INDEX ON table_example (first_observed, last_observed);
CREATE INDEX ON table_example (area_id);
这是从EXPLAIN (ANALYZE,BUFFERS)
输出的:
GroupAggregate (cost=3235559683.68..3377398628.68 rows=1418000 width=72) (actual time=334933.966..440096.869 rows=21688 loops=1)
Group Key: (('2019-01-19'::date - ((generate_series((first_observed)::timestamp with time zone, (last_observed)::timestamp with time zone, '1 day'::interval)))::date)), area_id
Buffers: local read=118167 dirtied=118167 written=117143, temp read=1634631 written=1635058
-> Sort (cost=3235559683.68..3271009671.18 rows=14179995000 width=40) (actual time=334923.933..391690.184 rows=380203171 loops=1)
Sort Key: (('2019-01-19'::date - ((generate_series((first_observed)::timestamp with time zone, (last_observed)::timestamp with time zone, '1 day'::interval)))::date)), area_id
Sort Method: external merge Disk: 9187584kB
Buffers: local read=118167 dirtied=118167 written=117143, temp read=1634631 written=1635058
-> Result (cost=0.00..390387079.39 rows=14179995000 width=40) (actual time=214.798..171717.941 rows=380203171 loops=1)
Buffers: local read=118167 dirtied=118167 written=117143
-> ProjectSet (cost=0.00..71337191.89 rows=14179995000 width=44) (actual time=214.796..102823.749 rows=380203171 loops=1)
Buffers: local read=118167 dirtied=118167 written=117143
-> Seq Scan on table_example (cost=0.00..259966.95 rows=14179995 width=44) (actual time=0.031..2449.511 rows=14179995 loops=1)
Buffers: local read=118167 dirtied=118167 written=117143
Planning Time: 0.409 ms
JIT:
Functions: 18
Options: Inlining true, Optimization true, Expressions true, Deforming true
Timing: Generation 5.034 ms, Inlining 13.010 ms, Optimization 121.440 ms, Emission 79.996 ms, Total 219.480 ms
Execution Time: 441133.410 ms
这是table_example的样子:
column name data type
'house_pk' 'integer'
'date_in' 'date'
'first_observed' 'date'
'last_observed' 'date'
'price' 'numeric'
'area_id' 'integer'
有60个不同的area_id。
查询正在具有128 GB内存的多核计算机(24个核)上运行。但是,设置可能不是最佳的。
答案 0 :(得分:1)
在处理整个表时,索引通常是无用的(如果表行比索引宽得多,则可能只有索引扫描例外)。
在处理整个表时,我认为查询本身的性能优化没有太大余地。一件小事:
SELECT d.the_date
, generate_series(d.the_date - last_observed
, d.the_date - first_observed) AS days_to_date
, round(avg(price)) AS price
, area_id
FROM table_example
, (SELECT date '2019-01-19') AS d(the_date)
GROUP BY days_to_date, area_id;
假设first_observed
和last_observed
为date NOT NULL
,并且始终为< date '2019-01-19'
。否则,您需要投放/做更多的事情。
这样,您只有两个减法,然后generate_series()
使用整数(最快)。
添加的迷你子查询只是为了方便起见,仅提供一次日期。在准备好的语句或函数中,您可以使用参数,而无需这样做:
, (SELECT date '2019-01-19') AS d(the_date)
除此之外,如果EXPLAIN (ANALYZE, BUFFERS)
提到“磁盘”(例如:Sort Method: external merge Disk: 3240kB
),那么work_mem
的(临时)较高的设置应该会有所帮助。参见:
如果您负担不起更多的RAM,并且聚合和/或排序步骤仍散落到磁盘上,则可能有助于使用LATERAL
连接之类的查询来划分和征服:
SELECT d.the_date, f.*, a.area_id
FROM area a
, (SELECT date '2019-01-19') AS d(the_date)
, LATERAL (
SELECT generate_series(d.the_date - last_observed
, d.the_date - first_observed) AS days_to_date
, round(avg(price)) AS price
FROM table_example
WHERE area_id = a.area_id
GROUP BY 1
) f;
显然,假设有一个表area
。