我正在编写一个程序,该程序将获取电路板的图像并将其转换为数组。我的想法是,由于我已经可以获取每个板的图块,因此我将使用pkl文件来识别它并将其转换为数组,但是我总是会遇到此错误。 Error picture。这是我到目前为止的代码。我的目标是制作一个已捕获的木板阵列,看起来像这样Output,这是我的起始图像Image
import cv2
import numpy as np
import copy
import os
import conf
from sklearn.externals import joblib
class ImageProcess:
param1 = 70
param2 = 15
fields1 = fields2 = []
FieldTable = [[1 for j in range(15)] for i in range(15)]
def mouseEvent(self, event, x, y, flags, param):
if event == cv2.EVENT_MOUSEMOVE:
self.ImgCopy2 = copy.deepcopy(self.ImgCopy)
cv2.circle(self.ImgCopy2, (x, y), 3, (0, 255, 0), -1)
if event == cv2.EVENT_LBUTTONUP:
self.splitPointsTemp.append([x, y])
cv2.circle(self.ImgCopy, (x, y), 3, (255, 255, 255), -1)
self.ImgCopy2 = copy.deepcopy(self.ImgCopy)
def calibrate_board(self,img):
self.img = img
self.ImgCopy = copy.deepcopy(self.img)
self.ImgCopy2 = copy.deepcopy(self.img)
cv2.namedWindow('image')
cv2.setMouseCallback('image', self.mouseEvent)
self.splitPointsTemp = []
while True:
cv2.imshow('image', self.ImgCopy2)
if len(self.splitPointsTemp) == 4 or cv2.waitKey(1) & 0xFF == 27:
break
if len(self.splitPointsTemp) == 4:
self.splitPoints = self.splitPointsTemp
conf.set('splitPoints', self.splitPoints)
cv2.destroyAllWindows()
def imageSplit(self):
self.calibrate_board(self.img)
majorCorners = conf.get('splitPoints')
self.splitPoints = eval(str(majorCorners))
if len(self.splitPoints) != 4:
print("Board not detected!")
rows, cols, ch = self.img.shape
pts1 = np.float32(self.splitPoints)
pts2 = np.float32([[0, 0], [600, 0], [0, 600], [600, 600]])
M = cv2.getPerspectiveTransform(pts1, pts2)
self.trimmed = cv2.warpPerspective(self.img, M, (600, 600))
#~~~~~~~~~~~~~~IMAGE ROTATION~~~~~~~~~~~~
rows, cols, depth = self.trimmed.shape # Without this code the image will be upside down
matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), 45 * int(conf.get('rotate')), 1)
self.trimmed = cv2.warpAffine(self.trimmed, matrix, (cols, rows))
#~~~~~~~~~~~~~~~generating edges image~~~~~~~~~~~~
self.edgesImage = cv2.cvtColor(self.trimmed, cv2.COLOR_BGR2GRAY)
self.edgesImage = cv2.medianBlur(self.edgesImage, 5) # CHANGE
self.edgesImage = cv2.GaussianBlur(self.edgesImage, (3, 3), 0) # CHANGE
#self.edgesImage = copy.deepcopy(image)
self.edgesImage = cv2.Canny(self.edgesImage, float(conf.get('param1')), float(conf.get('param2'))) #90, 200
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
self.normalImage = copy.deepcopy(self.trimmed)
#~~~~~ROTATING FOR ALGORITHM:~~~~~~~~~~~~~~~~~~~~~~
rows, cols, depth = self.trimmed.shape
matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), -180, 1)
self.trimmed = cv2.warpAffine(self.trimmed, matrix, (cols, rows))
points = []
for i in range(1, 602, 40):
for j in range(1, 602, 40):
points.append([j, i])
dic = {}
for i in range(0, 16):
for j in range(0, 16):
dic[i, j] = points[(16 * i) + j]
self.trimmed = cv2.cvtColor(self.trimmed, cv2.COLOR_BGR2GRAY)
for i in range(15):
for j in range(15):
x1 = dic[i, j][0]
y1 = dic[i, j][1]
x2 = dic[i + 1, j + 1][0]
y2 = dic[i + 1, j + 1][1]
self.FieldTable[i][j] = self.trimmed[y1:y2, x1:x2]
for i in range(15):
for j in range(15):
x1 = dic[i, j][0]
y1 = dic[i, j][1]
x2 = dic[i + 1, j + 1][0]
y2 = dic[i + 1, j + 1][1]
cv2.circle(self.trimmed, (x1, y1), 2, (0, 0, 255))
cv2.circle(self.trimmed, (x2, y2), 2, (0, 0, 255))
cv2.imshow('result', self.trimmed) ###
cv2.waitKey(0) ###
def frame_table(self, image):
Trydetect = joblib.load('Tilesdetect.pkl')
self.img = copy.deepcopy(image)
self.imageSplit()
result = [[0 for i in range(15)] for j in range(15)] #This is where the column and rows of the board are being discovered
num=0
#path = "C:\\Users\\hp\\AppData\\Local\\Programs\\Python\\Python37-32\\Thesis\\scrabble-draft\\Storing"
while True: # This is the part where it will get all the extracted tiles and save it in a folder
for i in range(15):
for j in range(15):
cv2.imshow('tile', self.FieldTable[i][j])
cv2.waitKey(0)
Preditcion = Trydetect.predict(self.FieldTable[i][j].reshape(1,-1))
#cv2.imwrite(os.path.join(path, "Image {0}.jpg".format(num)),self.FieldTable[i][j]) #saved each file
#if cv2.waitKey(0) & 0xFF == ord('q'): Uncomment if you want manually
# break
num += 1
#result[i][j] = self.searchForPiece(self.FieldTable[i][j])
return result
if __name__ == '__main__':
proc = ImageProcess()
img = cv2.imread("Scrabble_pic.jpg")
#img = cv2.resize(img, (600, 600))
print(proc.frame_table(img))
答案 0 :(得分:1)
import numpy as np
import cv2
from PIL import ImageGrab
def convert_image_to_array():
img = ImageGrab.grab()
img_np = np.array(img)
输出
[[[255 255 255]
[255 255 255]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]
[[255 255 255]
[255 255 255]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]
[[255 255 255]
[255 255 255]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]
...
[[ 20 20 20]
[ 16 16 16]
[ 17 17 17]
...
[ 17 17 17]
[ 18 18 18]
[ 18 18 18]]
[[ 17 17 17]
[ 16 16 16]
[ 17 17 17]
...
[ 17 17 17]
[ 18 18 18]
[ 18 18 18]]
[[ 17 17 17]
[ 17 17 17]
[ 16 16 16]
...
[ 17 17 17]
[ 16 16 16]
[ 18 18 18]]]