如何将图像转换成数组?

时间:2019-01-17 16:04:29

标签: python image-processing

我正在编写一个程序,该程序将获取电路板的图像并将其转换为数组。我的想法是,由于我已经可以获取每个板的图块,因此我将使用pkl文件来识别它并将其转换为数组,但是我总是会遇到此错误。 Error picture。这是我到目前为止的代码。我的目标是制作一个已捕获的木板阵列,看起来像这样Output,这是我的起始图像Image

import cv2
import numpy as np
import copy
import os
import conf
from sklearn.externals import joblib

class ImageProcess:
    param1 = 70
    param2 = 15
    fields1 = fields2 = []
    FieldTable = [[1 for j in range(15)] for i in range(15)]

    def mouseEvent(self, event, x, y, flags, param):                                
        if event == cv2.EVENT_MOUSEMOVE:                                            
            self.ImgCopy2 = copy.deepcopy(self.ImgCopy)                             
            cv2.circle(self.ImgCopy2, (x, y), 3, (0, 255, 0), -1)                   

        if event == cv2.EVENT_LBUTTONUP:                                            
            self.splitPointsTemp.append([x, y])                                     
            cv2.circle(self.ImgCopy, (x, y), 3, (255, 255, 255), -1)                
            self.ImgCopy2 = copy.deepcopy(self.ImgCopy)                             

    def calibrate_board(self,img):                                                                                                                
        self.img = img                                                              
        self.ImgCopy = copy.deepcopy(self.img)                                      
        self.ImgCopy2 = copy.deepcopy(self.img)                                     
        cv2.namedWindow('image')                                                    
        cv2.setMouseCallback('image', self.mouseEvent)                              
        self.splitPointsTemp = []                                                   
        while True:                                                                 
            cv2.imshow('image', self.ImgCopy2)                                      
            if len(self.splitPointsTemp) == 4 or cv2.waitKey(1) & 0xFF == 27:      
                break                                                             
        if len(self.splitPointsTemp) == 4:                                 
            self.splitPoints = self.splitPointsTemp                          

        conf.set('splitPoints', self.splitPoints)                          
        cv2.destroyAllWindows()                                    

    def imageSplit(self):
        self.calibrate_board(self.img)
        majorCorners = conf.get('splitPoints')                                     

        self.splitPoints = eval(str(majorCorners))
        if len(self.splitPoints) != 4:
            print("Board not detected!")
        rows, cols, ch = self.img.shape
        pts1 = np.float32(self.splitPoints)
        pts2 = np.float32([[0, 0], [600, 0], [0, 600], [600, 600]])

        M = cv2.getPerspectiveTransform(pts1, pts2)
        self.trimmed = cv2.warpPerspective(self.img, M, (600, 600))

        #~~~~~~~~~~~~~~IMAGE ROTATION~~~~~~~~~~~~

        rows, cols, depth = self.trimmed.shape  # Without this code the image will be upside down

        matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), 45 * int(conf.get('rotate')), 1)
        self.trimmed = cv2.warpAffine(self.trimmed, matrix, (cols, rows))

        #~~~~~~~~~~~~~~~generating edges image~~~~~~~~~~~~
        self.edgesImage = cv2.cvtColor(self.trimmed, cv2.COLOR_BGR2GRAY)
        self.edgesImage = cv2.medianBlur(self.edgesImage, 5)                # CHANGE
        self.edgesImage = cv2.GaussianBlur(self.edgesImage, (3, 3), 0)      # CHANGE
        #self.edgesImage = copy.deepcopy(image)
        self.edgesImage = cv2.Canny(self.edgesImage, float(conf.get('param1')), float(conf.get('param2'))) #90, 200
        #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        self.normalImage = copy.deepcopy(self.trimmed)

        #~~~~~ROTATING FOR ALGORITHM:~~~~~~~~~~~~~~~~~~~~~~
        rows, cols, depth = self.trimmed.shape
        matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), -180, 1)
        self.trimmed = cv2.warpAffine(self.trimmed, matrix, (cols, rows))

        points = []
        for i in range(1, 602, 40):
            for j in range(1, 602, 40):
                points.append([j, i])

        dic = {}
        for i in range(0, 16):
            for j in range(0, 16):
                dic[i, j] = points[(16 * i) + j]

        self.trimmed = cv2.cvtColor(self.trimmed, cv2.COLOR_BGR2GRAY)
        for i in range(15):
            for j in range(15):
                x1 = dic[i, j][0]
                y1 = dic[i, j][1]
                x2 = dic[i + 1, j + 1][0]
                y2 = dic[i + 1, j + 1][1]
                self.FieldTable[i][j] = self.trimmed[y1:y2, x1:x2]


        for i in range(15):
            for j in range(15):
                x1 = dic[i, j][0]
                y1 = dic[i, j][1]
                x2 = dic[i + 1, j + 1][0]
                y2 = dic[i + 1, j + 1][1]
                cv2.circle(self.trimmed, (x1, y1), 2, (0, 0, 255))
                cv2.circle(self.trimmed, (x2, y2), 2, (0, 0, 255))

        cv2.imshow('result', self.trimmed) ###
        cv2.waitKey(0) ###

    def frame_table(self, image):
        Trydetect = joblib.load('Tilesdetect.pkl')
        self.img = copy.deepcopy(image)
        self.imageSplit()
        result = [[0 for i in range(15)] for j in range(15)] #This is where the column and rows of the board are being discovered
        num=0
        #path = "C:\\Users\\hp\\AppData\\Local\\Programs\\Python\\Python37-32\\Thesis\\scrabble-draft\\Storing"
        while True:   # This is the part where it will get all the extracted tiles and save it in a folder
            for i in range(15):
                for j in range(15):
                        cv2.imshow('tile', self.FieldTable[i][j])
                        cv2.waitKey(0)
                        Preditcion = Trydetect.predict(self.FieldTable[i][j].reshape(1,-1))
                        #cv2.imwrite(os.path.join(path, "Image {0}.jpg".format(num)),self.FieldTable[i][j]) #saved each file
                        #if cv2.waitKey(0) & 0xFF == ord('q'): Uncomment if you want manually
                           # break
                        num += 1
                        #result[i][j] = self.searchForPiece(self.FieldTable[i][j])
            return result

if __name__ == '__main__':

    proc = ImageProcess()
    img = cv2.imread("Scrabble_pic.jpg")
    #img = cv2.resize(img, (600, 600))

    print(proc.frame_table(img))

1 个答案:

答案 0 :(得分:1)

import numpy as np
import cv2
from PIL import ImageGrab

def convert_image_to_array():
    img = ImageGrab.grab()
    img_np = np.array(img)

输出

[[[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 255]
  [255 255 255]
  [255 255 255]]

 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 255]
  [255 255 255]
  [255 255 255]]

 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 255]
  [255 255 255]
  [255 255 255]]

 ...

 [[ 20  20  20]
  [ 16  16  16]
  [ 17  17  17]
  ...
  [ 17  17  17]
  [ 18  18  18]
  [ 18  18  18]]

 [[ 17  17  17]
  [ 16  16  16]
  [ 17  17  17]
  ...
  [ 17  17  17]
  [ 18  18  18]
  [ 18  18  18]]

 [[ 17  17  17]
  [ 17  17  17]
  [ 16  16  16]
  ...
  [ 17  17  17]
  [ 16  16  16]
  [ 18  18  18]]]