(基本上,我试图使用每个时间序列的一个标签对一维时间序列进行分类,但这对于这个一般性问题并不重要)
import random
from pprint import pprint
import keras.backend as K
import numpy as np
from keras.layers import Dense
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.utils import to_categorical
def getOutputLayer(layerNumber, model, X):
return K.function([model.layers[0].input],
[model.layers[layerNumber].output])([X])
model = Sequential()
model.add(LSTM(10, batch_input_shape=(1, 1, 1), stateful=True))
model.add(Dense(2, activation='softmax'))
model.compile(
loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
# generate some test data
for i in range(10):
# generate a random timeseries of 100 numbers
X = np.random.rand(10)
X = X.reshape(10, 1, 1)
# generate a random label for the whole timeseries between 0 and 1
y = to_categorical([random.randint(0, 1)] * 10, num_classes=2)
# train the lstm for this one timeseries
model.fit(X, y, epochs=1, batch_size=1, verbose=0)
model.reset_states()
# to keep the output simple use only 5 steps for the input of the timeseries
X_test = np.random.rand(5)
X_test = X_test.reshape(5, 1, 1)
# get the activations for the output lstm layer
pprint(getOutputLayer(0, model, X_test))
使用LSTM层获得以下激活值:
[array([[-0.04106992, -0.00327154, -0.01524276, 0.0055838 , 0.00969929,
-0.01438944, 0.00211149, -0.04286387, -0.01102304, 0.0113989 ],
[-0.05771339, -0.00425535, -0.02032563, 0.00751972, 0.01377549,
-0.02027745, 0.00268653, -0.06011265, -0.01602218, 0.01571197],
[-0.03069103, -0.00267129, -0.01183739, 0.00434298, 0.00710012,
-0.01082268, 0.00175544, -0.0318702 , -0.00820942, 0.00871707],
[-0.02062054, -0.00209525, -0.00834482, 0.00310852, 0.0045242 ,
-0.00741894, 0.00141046, -0.02104726, -0.0056723 , 0.00611038],
[-0.05246543, -0.0039417 , -0.01877101, 0.00691551, 0.01250046,
-0.01839472, 0.00250443, -0.05472757, -0.01437504, 0.01434854]],
dtype=float32)]
因此,对于每个输入值,我得到10个值,因为我在Keras模型中指定使用带有10个神经元的LSTM。但是,哪个是一个单元,哪个是输入门,一个是输出门,哪个是忘记门?
答案 0 :(得分:0)
好吧,这些是输出值,用于获取并查看每个门的值,并查看此issue
我在这里粘贴了必不可少的部分
for i in range(epochs):
print('Epoch', i, '/', epochs)
model.fit(cos,
expected_output,
batch_size=batch_size,
verbose=1,
nb_epoch=1,
shuffle=False)
for layer in model.layers:
if 'LSTM' in str(layer):
print('states[0] = {}'.format(K.get_value(layer.states[0])))
print('states[1] = {}'.format(K.get_value(layer.states[1])))
print('Input')
print('b_i = {}'.format(K.get_value(layer.b_i)))
print('W_i = {}'.format(K.get_value(layer.W_i)))
print('U_i = {}'.format(K.get_value(layer.U_i)))
print('Forget')
print('b_f = {}'.format(K.get_value(layer.b_f)))
print('W_f = {}'.format(K.get_value(layer.W_f)))
print('U_f = {}'.format(K.get_value(layer.U_f)))
print('Cell')
print('b_c = {}'.format(K.get_value(layer.b_c)))
print('W_c = {}'.format(K.get_value(layer.W_c)))
print('U_c = {}'.format(K.get_value(layer.U_c)))
print('Output')
print('b_o = {}'.format(K.get_value(layer.b_o)))
print('W_o = {}'.format(K.get_value(layer.W_o)))
print('U_o = {}'.format(K.get_value(layer.U_o)))
# output of the first batch value of the batch after the first fit().
first_batch_element = np.expand_dims(cos[0], axis=1) # (1, 1) to (1, 1, 1)
print('output = {}'.format(get_LSTM_output([first_batch_element])[0].flatten()))
model.reset_states()
print('Predicting')
predicted_output = model.predict(cos, batch_size=batch_size)
print('Ploting Results')
plt.subplot(2, 1, 1)
plt.plot(expected_output)
plt.title('Expected')
plt.subplot(2, 1, 2)
plt.plot(predicted_output)
plt.title('Predicted')
plt.show()