我想将许多每月时间序列数据分解为季节性因素。首先尝试下面的代码进行1个时间序列(即bmix_e)后,该代码即可工作。
decomposed = sm.tsa.seasonal_decompose(df.bmix_e.values, model='multiplicative', freq=12)
但是,在我添加了第二个时间序列bmix_s之后,该代码无法正常工作,我使用了与上述相同的代码。
所以,我想知道
如何为两个以上时间序列的季节性分解编写代码?
在分解序列后,如何以数据框形式获得每个时间序列的每月季节性因子的平均值(因为我根据分解的代码以季节形式获得数组形式的结果)。
答案 0 :(得分:1)
在预测定期数据时,对数据集中的季节性进行标准化很有用。随着Seasonal Autoregressive Integrated Moving Average
或SARIMA
的发展,做到这一点变得越来越容易。通过调整超参数,可以创建准确的模型。
以下(source)粘贴的代码
# grid search sarima hyperparameters
from math import sqrt
from multiprocessing import cpu_count
from joblib import Parallel
from joblib import delayed
from warnings import catch_warnings
from warnings import filterwarnings
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.metrics import mean_squared_error
# one-step sarima forecast
def sarima_forecast(history, config):
order, sorder, trend = config
# define model
model = SARIMAX(history, order=order, seasonal_order=sorder, trend=trend, enforce_stationarity=False, enforce_invertibility=False)
# fit model
model_fit = model.fit(disp=False)
# make one step forecast
yhat = model_fit.predict(len(history), len(history))
return yhat[0]
# root mean squared error or rmse
def measure_rmse(actual, predicted):
return sqrt(mean_squared_error(actual, predicted))
# split a univariate dataset into train/test sets
def train_test_split(data, n_test):
return data[:-n_test], data[-n_test:]
# walk-forward validation for univariate data
def walk_forward_validation(data, n_test, cfg):
predictions = list()
# split dataset
train, test = train_test_split(data, n_test)
# seed history with training dataset
history = [x for x in train]
# step over each time-step in the test set
for i in range(len(test)):
# fit model and make forecast for history
yhat = sarima_forecast(history, cfg)
# store forecast in list of predictions
predictions.append(yhat)
# add actual observation to history for the next loop
history.append(test[i])
# estimate prediction error
error = measure_rmse(test, predictions)
return error
# score a model, return None on failure
def score_model(data, n_test, cfg, debug=False):
result = None
# convert config to a key
key = str(cfg)
# show all warnings and fail on exception if debugging
if debug:
result = walk_forward_validation(data, n_test, cfg)
else:
# one failure during model validation suggests an unstable config
try:
# never show warnings when grid searching, too noisy
with catch_warnings():
filterwarnings("ignore")
result = walk_forward_validation(data, n_test, cfg)
except:
error = None
# check for an interesting result
if result is not None:
print(' > Model[%s] %.3f' % (key, result))
return (key, result)
# grid search configs
def grid_search(data, cfg_list, n_test, parallel=True):
scores = None
if parallel:
# execute configs in parallel
executor = Parallel(n_jobs=cpu_count(), backend='multiprocessing')
tasks = (delayed(score_model)(data, n_test, cfg) for cfg in cfg_list)
scores = executor(tasks)
else:
scores = [score_model(data, n_test, cfg) for cfg in cfg_list]
# remove empty results
scores = [r for r in scores if r[1] != None]
# sort configs by error, asc
scores.sort(key=lambda tup: tup[1])
return scores
# create a set of sarima configs to try
def sarima_configs(seasonal=[0]):
models = list()
# define config lists
p_params = [0, 1, 2]
d_params = [0, 1]
q_params = [0, 1, 2]
t_params = ['n','c','t','ct']
P_params = [0, 1, 2]
D_params = [0, 1]
Q_params = [0, 1, 2]
m_params = seasonal
# create config instances
for p in p_params:
for d in d_params:
for q in q_params:
for t in t_params:
for P in P_params:
for D in D_params:
for Q in Q_params:
for m in m_params:
cfg = [(p,d,q), (P,D,Q,m), t]
models.append(cfg)
return models
if __name__ == '__main__':
# define dataset
data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
print(data)
# data split
n_test = 4
# model configs
cfg_list = sarima_configs()
# grid search
scores = grid_search(data, cfg_list, n_test)
print('done')
# list top 3 configs
for cfg, error in scores[:3]:
print(cfg, error)