遍历numpy矩阵元素

时间:2019-01-16 20:55:04

标签: python numpy

我有以下矩阵,其中每个元素代表特定分数线的概率。 enter image description here

主队的进球数在y轴上,客队的进球数在x轴上。分数线0-0例如是1.21,分数线4-3是0.84。我知道主队获胜的可能性等于

   np.sum(np.tril(match_score_matrix, -1))

开奖的概率等于:

   np.sum(np.diag(match_score_matrix))

损失的概率等于:

   np.sum(np.triu(match_score_matrix, 1)),

现在,我想知道每个目标差异的概率。在此矩阵中,以下目标差异结果是可能的[-6,-5,...,0,...,15)。我该如何编写一个循环来计算每个结果的可能性?

def get_probabilities(match_score_matrix, max_goals_home, max_goals_away):
    return dict({'max_goals_away': np.something,
                 '-5', np.something,
                 '-4', np.something,
                 ... 
                 '0', np.diag(match_score_matrix)),
                 '1', np.something
                 ...
                 'max_goals_home', np.something })

如何在一个易于使用的循环中编写此代码?预先谢谢你!

2 个答案:

答案 0 :(得分:0)

您可以使用np.diag提取第k条对角线,然后将其求和。

{str(i):np.sum(np.diag(match_score_matrix,k=i)) for i in range(-15,8)}

答案 1 :(得分:0)

考虑在np.diagonal中使用 offset 。因为对角线是主队和客队之间的进球数相等时,所以当客队比主队高一个进球时,向上偏移一个概率。相反,当主队比客队高出一个目标时,向下偏移一个概率。因此,将两个概率相加。

# AWAY ONE GOAL HIGHER
np.sum(np.diagonal(match_score_matrix, offset=1))    
# HOME ONE GOAL HIGHER
np.sum(np.diagonal(match_score_matrix, offset=-1))

# AWAY TWO GOALS HIGHER
np.sum(np.diagonal(match_score_matrix, offset=2))    
# HOME TWO GOALS HIGHER
np.sum(np.diagonal(match_score_matrix, offset=-2))
...

# AWAY MAX GOALS HIGHER USING array.shape
np.sum(np.diagonal(match_score_matrix, offset=match_score_matrix.shape[0]))
# HOME MAX GOALS HIGHER USING array.shape
np.sum(np.diagonal(match_score_matrix, offset=-match_score_matrix.shape[0]))

对于所需的字典,请使用字典理解

def get_probabilities(match_score_matrix, max_goals_home, max_goals_away):

    # DICTIONARY COMPREHENSION 
    return {str(i): np.sum(np.diagonal(match_score_matrix, offset=i)) for i in range(-15,15)}