使用pyspark如何拒绝csv文件中的错误(格式错误)记录并将这些拒绝的记录保存在新文件中

时间:2019-01-15 12:54:46

标签: apache-spark pyspark pyspark-sql

我正在使用pyspark将csv文件中的数据加载到数据帧中,并且能够在删除格式错误的记录的同时加载数据,但是我如何才能拒绝csv文件中的这些错误(格式错误)的记录并保存这些被拒绝的记录在一个新文件中?

1 个答案:

答案 0 :(得分:1)

这是一个主意,尽管我对此并不满意。众所周知,CSV解析器具有不同的模式来丢弃格式错误的数据。但是,如果未指定任何模式,它将使用默认的null值“填充空白”。您可以利用它来发挥自己的优势。

使用此数据,并假定列article_id在设计上不可为空:

1,abcd,correct record1,description1 haha
Bad record,Bad record description
3,hijk,another correct record,description2
Not_An_Integer,article,no integer type,description

代码如下:

#!/usr/bin/env python
# coding: utf-8

import pyspark
from pyspark.sql.types import *
from pyspark.sql import Row, functions as F

sc = pyspark.SparkContext.getOrCreate()
spark = pyspark.sql.SparkSession(sc)

# Load the data with your schema, drop the malformed information
schema = StructType([ StructField("article_id", IntegerType()), 
                     StructField("title", StringType()), 
                     StructField("short_desc", StringType()), 
                     StructField("article_desc", StringType())]) 
valid_data = spark.read.format("csv").schema(schema).option("mode","DROPMALFORMED").load("./data.csv")
valid_data.show()

"""
+----------+-----+--------------------+-----------------+
|article_id|title|          short_desc|     article_desc|
+----------+-----+--------------------+-----------------+
|         1| abcd|     correct record1|description1 haha|
|         3| hijk|another correct r...|     description2|
+----------+-----+--------------------+-----------------+
"""

# Load the data and let spark infer everything
malformed_data = spark.read.format("csv").option("header", "false").load("./data.csv")
malformed_data.show()

"""
+--------------+--------------------+--------------------+-----------------+
|           _c0|                 _c1|                 _c2|              _c3|
+--------------+--------------------+--------------------+-----------------+
|             1|                abcd|     correct record1|description1 haha|
|    Bad record|Bad record descri...|                null|             null|
|             3|                hijk|another correct r...|     description2|
|Not_An_Integer|             article|     no integer type|      description|
+--------------+--------------------+--------------------+-----------------+
"""

# Join and keep all data from the 'malformed' DataFrame.
merged = valid_data.join(malformed_data, on=valid_data.article_id == malformed_data._c0, how="right")

# Filter those records for which a matching with the 'valid' data was not possible
malformed = merged.where(F.isnull(merged.article_id))
malformed.show()

"""
+----------+-----+----------+------------+--------------+--------------------+---------------+-----------+
|article_id|title|short_desc|article_desc|           _c0|                 _c1|            _c2|        _c3|
+----------+-----+----------+------------+--------------+--------------------+---------------+-----------+
|      null| null|      null|        null|    Bad record|Bad record descri...|           null|       null|
|      null| null|      null|        null|Not_An_Integer|             article|no integer type|description|
+----------+-----+----------+------------+--------------+--------------------+---------------+-----------+
"""

我不太喜欢这个,因为它对Spark解析CSV的方式非常敏感,并且可能不适用于所有文件,但是您可能会发现它很有用。