我正在尝试使用Eli5来解释用于时间序列预测的LSTM keras模型。 keras模型接收具有形状(nsamples,时间步长,nfeatures)的数组作为输入。
这是我的代码:
def baseline_model():
model = Sequential()
model.add(LSTM(32, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(loss='logcosh', optimizer='adam')
return model
from keras.wrappers.scikit_learn import KerasClassifier, KerasRegressor
import eli5
from eli5.sklearn import PermutationImportance
my_model = KerasRegressor(build_fn= baseline_model, nb_epoch= 30, batch_size= 32, verbose= False)
history = my_model.fit(X_train, y_train)
到目前为止,一切正常。问题是当我执行以下行会引发错误时:
# X_train has a shape equal to (nsamples, timesteps, nfeatures) and y_train has a shape (nsamples)
perm = PermutationImportance(my_model, random_state=1).fit(X_train, y_train)
错误:
ValueError Traceback (most recent call last)
in ()
2 d2_train_dataset = X_train.reshape((nsamples, timesteps * features))
3
----> 4 perm = PermutationImportance(my_model, random_state=1).fit(X_train, y_train)
5 #eli5.show_weights(perm, feature_names = X.columns.tolist())
~/anaconda3/lib/python3.6/site-packages/eli5/sklearn/permutation_importance.py in fit(self, X, y, groups, **fit_params)
183 self.estimator_.fit(X, y, **fit_params)
184
--> 185 X = check_array(X)
186
187 if self.cv not in (None, "prefit"):
~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
568 if not allow_nd and array.ndim >= 3:
569 raise ValueError("Found array with dim %d. %s expected <= 2."
--> 570 % (array.ndim, estimator_name))
571 if force_all_finite:
572 _assert_all_finite(array,
ValueError: Found array with dim 3. Estimator expected <= 2.
我该如何解决此错误?如何在我的LSTM Keras模型中使用eli5?